칼럼) 미분 가능성 (수정사항 있습니다)
게시글 주소: https://o.orbi.kr/00058203708
미분 가능성 for Orbi.pdf
어제 갑자기 미분 가능성 나올 것 같아서 칼럼 올립니다!
수2 하시는 분들도 봐두면 좋은 내용 있으니 보시고, 미적 선택자들은 얻어갈 거 많을 듯 하네요.
다운로드 하시면서 좋아요 눌러주세요 :)
오랜만에 이렇게 칼럼으로 인사드리네요 9평 관련 글 아마 작성되는대로 올라갈 듯 합니다!
*수정 사항은 해당 페이지 이미지 아래에 썼습니다. 이미지들 확인 바랍니다
2번에서 두 번째줄부터 수정해주세요
(이번에는 g(x)의 극한은 존재하므로 (미분계수의 정의에 해당하는 x+h 즉, 증분의 극한값) f’의 값은 상관없다. 따라서 fg가 연속이 되도록 f=0만 되도 되어서 인수 개수 0개 초과면 된다.
3번의 경우 g->g’, f’->f로 수정해주세요. 결론인 0개 초과는 맞습니다.
ㄱ의 네 번째줄 좌극한식의 결과를 f(x)의 좌미분계수네서 우미븐계수로 수정해주세요
0 XDK (+21,020)
-
10,000
-
10
-
10
-
1,000
-
10,000
이거만 보고 수학 150점 받았습니다
가장 좋아하는 파트
9평 문제 궁금하네요 ㅎㅎ,,,
차수논리를 쉽게 풀어내셨네용 좋은글 보고갑니다
오랜만이시네요! 쉽게 쓰려 노력했는데 알아봐주셔서 감사합니다 ㅎㅎ
잘먹을게요! 선우형 기좀 주세요
사랑한다고
오늘공부는이것만한다 아ㅋㅋ
좋은글 감사해요!!!
칼럼추
잘 읽었습니다!
다만 f'(x)g(x) + f(x)g'(x)로 해석하는 부분에서 g(x)가 극한값은 존재하지만 함숫값과는 다른 케이스 부분에서 질문이 있는데요 ㅠ
위 식처럼 정의대로 생각하면 f'(x)g(x)부분에서 g(x)가 극한값이라 f(x)만 0이면 되는게 아닌건가요..? 이때껏 그렇게 알고 있었는데 왜 아닌지 잘 모르겠어요,,
특수 케이스면 위에서 말씀하신 걸로 되는 함수도 있는데 일단 일반적인 걸 다루느라 저리 썼습니다 ㅜㅜ 하지만 앞선 댓글의 것도 가능한 경우도 있어서 결국 문제마다 따져봐야죠…!
아 그렇군요! 일단 1개 초과인걸로 알고 있어야겠네요 ㅎㅎ 좋은 칼럼 감사드립니다!!
제가 다시 검토 한 번 해보겠습니다
고쳤습니다. 제가 3번 설명을 2번에 썼습니다 해주신 말씀이 맞습니다.
2페이지 3번 설명에 오류있는거같아요..! fx f'x gx g'x 반대로써져있는거같아요..
기재했습니다. 제가 오타를 반대로 냈네요 알려주셔서 감사합니다,,
아니에요!! 5페이지 ㄱ 마지막에도 우미분계수 좌미분계수라고 오타있는거같아요 !
맞네요 …. 감사합니다
올려주시는 자료 항상 너무 잘보고있습니다 감사해요 :)
죄송한데 올리신 파일에 수정사항이 반영된건가요?
이미지 밑에 써두었다고 기재했습니다 제가 밖이라 지금 파일 수정을 못하네요,,
좋은자료 너무너무감사합니다