[규토] 공간도형과 벡터 자작문제 12 (해설첨부)
게시글 주소: https://o.orbi.kr/0007826079
공간도형과 벡터 자작문제 12 문제지+해설지.pdf
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그럼 최상위권은 다 ㅈ된거 아님?
-
EBS 오피셜 ) 올해 수능 국어는 9모 경향으로 출제 10
https://www.hankyung.com/article/2024111413027...
-
ㅈㄴ쉽다 좀어려운데?
-
몬가요
-
이제 팀공칠의 차례가 다가오는군요... 11/14 목
-
그래그래 미안해 화작할게 언매 4틀 해놓고 언매하겠다고 깝쳐서 미안해
-
수능 시험지 2
pdf 언제쯤 올라오나요?
-
나온 글 들 분석해보니, 밖에서 문제 접한 사람=물, 현장 체험=불 0
일단 비문학 쉬웠고, 작년처럼 괴랄 맞지 않아서 입시와 관련없는 사람들이 보기엔 =...
-
총평 부탁드려요
-
미적분이나 공통에서 합성함수 나옵니다 성지 순례 ㄱㄱ 5
공통 합성함수 근 개수 문제나 미적분 오랜만에 하나 나올듯
-
그림의 S1, S2가 그려질 벽면이 어디있음?? 어디가 우주의 벽면이라고 가정하고...
-
독서론 밑줄긋기에 대하여 서술. 밑줄긋기의 효용, 하는 방법 등. 너무 많이 긋지는...
-
문학 한지문이 ‘겉보기에’ 난해한거 빼곤 그냥 너무 쉬운데 1컷 90은 최소 넘을듯
-
물/불 이라고 의견 갈리고 확실히 개물 개불은 아닌거 보니 2
국어 존나 잘냈네 ㅇㅇ 20 21 23 수능처럼 잘 낸 수능들 반응이 누군 불이다...
-
언매 개념을 안돌렸어요 다 돌리고 고3때 풀어볼까요 아님 지금 풀어볼까요
-
막상 수능 시험지 보니 다시 준비하고 싶어짐 미쳤나? (물론 절대 안할 예정…)...
-
최중철 2025학년도 대학수학능력시험(수능) 출제위원장(동국대 화학과 교수)는...
-
그냥 비문학 하나 추가한 거 아닌교
-
뭔가 쎄한데 왜 평이하다고 하지 내가 이상한건가
-
후배가 생기고싶어요
-
난 집에서 편하게 푸는거니... 현장에서는 11번 ①과 같은 ~만에 혹할 수 있었을...
-
EBS 에선 쉬웠다고 하네요 9모급이라면 개 쉬웠다는 건데 물수능이면 ㅋ 난리나겠는데요
-
사회가 원하는 인재상(머리, 멘탈 좋고 등등)은 어차피 국어 잘 풀고 좋은 대학 감
-
22때 다들 그냥 문제지보고 물이라고 평했다가 등급컷 까고 불인 거 확정나서 고닉...
-
킬러 안낸다고 그러면서 변별력 잡으려고 고른 난이도 문항 배치하고 텍스트를 확 늘린...
-
이거좀 꼬롬한데?? 상당히 개같은느낌이있음
-
국어 1컷 예측 3
90 플마 1
-
그정도 물은 아닌 것 같은데? 생각해야되는 문제도 좀 있고. 다른거 안풀어봤고 개인적인 의견입니다.
-
비문학에서 크게 괴랄한 소재는 안보임.(물론 전 국어 강사가 아니라 소재에만...
-
사실 과외생들한테 별의별 내용 다 가르쳐서 적중을 안할 수가 없긴 한데 그래도...
-
올해 필적확인란
-
ㄷㄷ
-
내가 1년동안 쳐놀아서 뇌가 썩은건가
-
그냥 느낌이.. 24학년도 기출 반영해서 만든 스페어 문항 가져다가 주제 좀 바꾸고...
-
지구가 조금만 회전해도 멀리있는 별은 엄청나게 긴 상대운동을 하게됨 상대성이론에...
-
ㄹㅇ
-
1. 평가원은 장지문을 안 읽고 푸는 새끼들을 싫어하는 것 같다 2. 평가원은...
-
황밸~약불 사이의 느낌?
-
근데 올해 물2로 탈주한 인원 많다는 소문 사실임? 1
작년 투과목 표점 이득으로 많이들 투로 탈주했는데 물2 인원이 역대 최대라는... 맞음?
-
정보) 용가랑 석상은 학계에서 순경음 비읍의 음소 논란 여부에 잘 쓰였다 5
그거가지고 원로학계에서 말 많았음
-
확실히 좀더 읽고봐야함
-
사회지문에서 현실에서 아가리 닫고 있는 애들이 인터넷에선 맘편히 본성 드러낸다고...
-
아 에반데
-
수능 다 치고 알아도 되니까 조급해하지 ㄴㄴ
-
난이도 판단 바로되겠나요.. 걍 나중에 보셈 작년에도 무난 드립나오다가 욕 개먹은거 생각하면
-
문구는 언제 공개되는 건가요?
-
직접보고 판단하지요
-
독서론 1
심멘...
-
국어가 그냥 무난하면 수학도 무난 그럼 과탐이 불? 4
국어가 무난 그렇닥고 수학을 불지르면 오히려 의대가려고 N수 하는 N수생 절대 유리...
캬..좋은 타이밍에 들어왔네요.
좋아요 박고 문제 다운받아갑니다
감사합니다~ ㅎㅎ
문제 괜찮네요.
처음에 풀때 아무 생각없이 풀었더니 '음? 왜 cf>0 이라는 조건이 쓰이는 곳이 없지? 내가 잘못풀었나?' 싶어서 답만 확인해보니까 역시...
멍청하게 생각없이 문제에 달려들지 말고 하나하나 다 따져가면서 풀어야 겠다는 교훈을 얻었습니다.감사합니다.
ㅎㅎ 풀어주셔서 감사합니다~ 문제지 양식 다시 바꿔서 첨부했어요~
개정 교육과정에 맞는 문제인가요? 맞다면 한 번 풀어보고싶네요~
반각이 있긴하지만 덧셈정리로 충분히 유도할 수 있다고 생각해서 넣었습니당~
틈틈이 한 번 풀어볼게요~ 감사합니다^^
제가 더 감사합니다~ㅎㅎ
확실히 난이도가 수능을 한참 넘어서는 군요ㅠㅠ 겁없이덤볐다가 으억
풀어주셔서 감사합니당~ ㅎ
답지안보고 푼 보람이 있네요!! 드디어 답냈습니다 ㅠㅠ
크 멋지십니다 ㅎㅎ 생각하기 어려우셧을 텐데 ㅎㅎ
두 원판이 저렇게 평면상이 아닌 공간상에서 접하는 것을 교과과정으로 설명할 수 있나요?
주어진 조건에 따라 만족하는 원판그림은 한개밖에 되지않는다고생각해용 충분히 직관적으로도 이해 할수있다고 생각해용
냠냠
믿고 쓰는 단면화 문제군요.. 전 임의의 법선벡터 (a b c)로 놓고 구했는데 숫자가 깔끔해서 바로 나오긴했는데 풀이를 보니 3등분이 되는걸 이용하신게 의도군요.. 발상이 어려울것 같은데..ㅠ 항상 좋은문제 감사합니다!
저도 다시풀어봤을때 어렵더라구요 ㅎㅎ 감사합니당 ~이런문제도 있구나를 알려주고싶었어용 ㅎ
제가 답지와 나온 것과 다르게 풀었는데요.. y+z+d=0 까지는 나왔는데 d의 경우의 수가 -2와 0 두가지가 나오더라구요. 답지를 보니 좌표로 풀이가 되어있던데 저는 좌표를 두 직선 교점 이용할 때 빼놓고는 사용하지 않아서 두 가지 중 하나를 추려낼 수 가 없더라구요. ㅠㅠ 혹시 제 풀이 좀 봐주실 수 있나요??
아마 직선 방향백터 두개 구하시고 법벡구하신것 같고 알파 평면거리쓰셔서 두개나오신것같아요 ㅎ 근데 결국 추려내려면 평면위 한점을 알아내야하는데 결국 좌표로 접근할수밖에 없어용
으으 그렇군요 ㅠ 아직 좌표랑 접목시켜서 생각하는게 좀 힘드네요 ㅠㅠ 좋은문제 만들어주셔서 감사합니다!!!! 방금 닉변해서 닉이 다릅니다 ㅎㅎㅎ
저도 그렇게 접근했었는데..d=0이면 cf>0 이라는 조건을 만족하지 않습니다.
※그리고 법선벡터가 (0,1,1)하고 (1,0,0) 두개 나오는데 (1,0,0)으로 잡으면 답이 이상해서(...) (0,1,1)으로 잡았는데 yd9353님은 이거 어떻게 처리하셨나요? 처음 풀었을때 부터 계속 이게 맘에 걸리더군요..지금도 고민중이고요.
저는 주어진 직선 m,n에 평면 법선벡터 코사인 구해서 두개는 같다고 놓고 풀었습니다. 그러니까 ax+by+cz+d=0 으로 놓구 (1,1,1)과 (-1,1,1) 이 두 직선과의 코사인을 루트2/루트3 이렇게 하면 a+b+c=-a+b+c 라구 나오더라구요. 그래서 당연히 a=0이구나 해서 (0,1,1)로 놓고 풀었습니다!!
방향벡터 두개 더하면 (0.1.1) 나와용~ 평행사변형 법으로 두개의 벡터를더하시면 법벡나와용
와 그렇게 쉽게 구하는 방법도 있네요... ㅋㅋ
흐익..죄송합니다. 댓글 단다는거 실수로 신고 눌렀네요..ㅜㅜ 졎지님, 의도적으로 신고한거 아닙니다..ㅜㅜ
평행사변형법으로 더하면 되긴 한데 문제는 벡터의 방향처리가 껄끄러워서요..
두 벡터의 종점이 모두 원판을 뚫고 나가면 (0,1,1)로 처리해주면 되는데 한 벡터는 원판을 뚫고 나가고 다른 한 벡터는 원판을 뚫고 들어오면 (1,0,0)으로 계산해줘야 되는거 아닌가..해서요.(그러니까 (1,1,1)-(-1,1,1) 이렇게요)
혹시 제 생각이 불필요한 것이었나요..?
(1.0.0)이라고하면 x=a라고 생각할수있는데요 p점이 그위에있으려면 a=0이되야하는데 그럼 알파평면과 교점의 최단거리가 루트2/2 가되지못해용
아..그렇군요..그렇게 확인하면 되겠네요.막힐때마다 문제 조건을 다시 보면서 체크해나가야 겠군요..ㄷㄷ
규토님하고 잘하고싶다님 두분 다 답변해주셔서 감사합니다!!(^_^)
항상 드는 생각인데 모의고사나 n제 출판 생각 없으세요?? 문제가 정말 좋아서요ㅎ
좋은말씀 감사합니다 ㅎㅎ n제는 문제가 더 쌓이면 도전해보고싶고 실모도 기회가 된다면 도전해보고싶네요 ㅎㅎ 작년에는 과외받다보니까 모두 고3문과 학생들이엿습니다. 1등급을 가르는기준이 21번이라고생각했고 30번은 공부해도 맞출확률이 낮다고판단하였습니당 ㅎ과외학생들을위해서 실모를 제작하기보다는 집중적으로 21번을 공략하는것이 낫다고판단하여 21번형문제만 만들었습니다
대단하시군요.. 느끼는거지만 문제 만드시는데 능력이 상당하신것같네요.. 교재 기대할게요ㅎ
좋은말씀감사합니다~ㅎ
깔끔깔끔 좋은문제 감사합니다!!!
제가 더 감사합니다~ ㅎ
ab ac가 지름이라는거 못보고 아니 식이 왜 하나 없지??? 이러면서 헤맸네요 ㅋㅋㅋㅋ 아 깜짝놀랐네 아무튼 좋은 문제 감사합니다
ㅎㅎ 감사합니당~
두 직선의 방향 벡터를 더하면 평면의 법선벡터 나오지 않나요??
네 위에질문에도있듯이 2개중에 (0.1.1)만되용근데 법벡만으론 문제를 풀수없어용
문제좋당
문제좋당
공간도형과 벡터 자작문제 13도올렸으니까 풀어보시면 좋을것 같아요~
자작모음이라고 쓰신 글 담에 올리신 문제들은 자작모음에 포함되지 않은 것들인가요?
네 ㅎ 모이면 또 올려드릴게요. 이때까지 만든 자작문제들중 개정 교과에 들어가는 부분만 오르비에서 책을낼 예정이에요.현재 원고작성 중에 있구요. 다음주중에 오르비에 원고 제출예정이에요. 예상 5월달 쯤 책이 나올것같아요. 기존의 해설지와 차별화를 두기위해 총력을 기울이고 있어요. 규토에게 직접 과외받는듯한 해설지. 빵빵한 해설지 저자와 소통하는 해설지를 만들고자 노력하고있어요.