심심한 기출분석 (230922)
게시글 주소: https://o.orbi.kr/00071661968
1. 극단적인 경우 생각해보기
문제에 대해 파악하고 싶을 때 극단적인 경우를 먼저 보는 것이 좋을 수 있다.
2. 불변량
시행 각각을 전부 파악하는건 불가능하다. 변하지 않는 양을 찾아 걔네는 고정해놓고, 변하는 애들만을 관찰해야겠다.
3. 문제풀이
f와 g 관찰) 주어진 함수를 해석해보면
f는 극값을 가지는 최고차항의 계수가 양수인 삼차함수. (또한, 3에서 극댓값 8)
g는 x<t에서 f를 f(t)에 대해 선대칭.
이정도 해석은 바로 할 수 잇어야 될거 같습니다.
즉, g는 어떤 t에 대해 다음과 같이 그려지겟죠
(x=t이전에는 초록색 그래프를 타다가, 그 이후에는 검은색으로 전환)
h라는 함수를 알기위해, f라는 함수의 근을 알 필요가 잇슴미다.
f는 3보다 작은 지점에서 감소하므로 근을 하나 가질 수밖에 없다는 것을 생각해줘야겟죠. (그 근을 alpha라 합시다.)
h관찰) h라는 함수를 알기위해 극단적인 경우를 먼저 봅시다.
t가 굉장히 작을 때를 생각해보면, g가 x=3 이하에서 근을 2개 가짐을 알 수 있습니다.
여기서 t를 점점 키워보며 함수에 대해 관찰을 해봅시다.
이 때, 중요한 점은 t=3까지 t를 증가시키면서, x>3인 g의 근의 개수는 불변량이므로 고려하지 않아도 된다는겁니다.
불연속이 될만한 점은 x=alpha밖에 없습니다. 이 때를 봐주면 근의 개수가 2->1->0으로 바뀌며 불연속점이 됨을 쉽게 확인 가능합니다.
이제 t=3 이후에서는 h가 불연속이 되는 점이 딱 하나만 존재해야 한다는 것을 알고 갑시다.
이번엔 f가 감소하는 구간을 봐줘야하는데 이 때, f의 극댓값이 f(t)에 대해 대칭이 될겁니다.
즉, 이 대칭된 값이 x축에 닿는다면, h의 불연속의심점이 생기게 되겟죠, 케이스를 분류해줍시다.
I) 안 닿는 경우
즉, t가 f의 극소지점까지 이동하면서 한 번도 g가 x축에 닿지 않는다는건데 이러면 당연히 근의 개수는 항상 0개가 됩니다. 즉, h의 불연속점이 1개이므로 문제를 만족하지 않습니다.
II) 닿는 경우
닿는 경우는 2가지로 나눌 수 잇을겁니다.
i) t가 f의 극소지점까지 이동하고나서야 닿는다.
ii) t가 그 이전일 때 닿는다.
둘 중 어떤 경우를 먼저 보느냐에 따라 풀이 속도가 달라지겟죠. 결론부터 말하자면, (i)의 경우를 먼저 봐야하고, 그 경우가 답이 됩니다. 왜 (i)를 먼저 봐야하는지 2가지 방법으로 생각해보죠.
1) 특수.
(i)의 경우가 (ii)의 경우보다 훨씬 특수한 경우임을 알 수 있습니다. 특수한 경우를 먼저 보고, 일반적인 경우로 확장하여 보는 것은 기본입니다.
2) 극단적인 경우.
h에 대해 알기위해 극단적인 경우, t가 굉장히 클 때를 생각해봅시다.
그러면 h의 값은 0이 됨을 알 수 있습니다.
만약 (ii)의 경우라면, 닿앗을 때, 불연속점이 생기고,
(근이 있다 하더라도, 닿는 경우 이후에 있을 수밖에 없음, 즉 아까 설정한 불변량은 아직도 불변량이다.)
그 이후 h값이 2 이상이 됨을 알 수 있습니다. (닿은 이후 좀 더 내려갈 테니까)
즉, 이 때 h값은 2 이상인데, t가 굉장히 클 때 h값은 0이므로 h가 2->0으로 가는 루트가 필요하겠죠.
또한, h의 값은 이산적으로 변할 수밖에 없습니다.
따라서 이 이후 h는 불연속점을 하나 이상 또 가지게 된다는 것이고, h의 불연속점은 3개 이상이 됩니다. (alpha, 닿앗을 때, 그 이후)
이는 문제를 만족하지 않음을 알 수 있습니다.
마무리)
(i)의 경우에서 f의 극솟값은 4가 되어야겟고, 비율관계를 이용해 f를 결정해주면 됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
학습칼럼 처음으로 열심히 써봤는데 아무도 반응안해줘서 슬픔 ㅜㅜ 4
ㅜㅜㅜ (은근슬쩍 홍보...
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
고2때까진 거의사용안했고 고3때 좀 하고싶은데 하루30분 밖에 안시켜줘서 성인인데...
-
기하 사랑해 1
기하가 너무 조아
-
대부분 la갈비가 로스앤젤레스인줄 아는데 그거 아님 la가 lateral의 약자고...
-
연고대는 웬만해선 50퍼 내외에 그 이상인 과도 많은데 서울대는 수시를 훨씬 많이...
-
첫인상(고3 1월) 물1 : '이과라면 당연히 해야하는 과목' 화1 : '화1만큼...
-
의치한약수간물 중에 하나 가고싶은데 ㅜ
-
베르테르 21번 푸리 16
이것도 다시 슬슬 어렵기 시작하네요.. 이거 cospi/6아니고 cos pi/3임..
-
eve상 노래가 듣고 싶은 밤이군아
-
다시 풀엇 습니다
-
착한 오르비언분들.. 12
좋아합니다! 네!
-
기구하다
-
면접 준비는 0
보통학원 다니나 아니면 학교에서?
-
설 기념 부모님이 많이 받거나 사오셨길래 갑자기 생각남 1.뼈가 너무 큼 2.뼈에...
-
내일은조발하겟지 1
안하면뛰어내림
-
기체 딸깍 4
어나클 버프로 2페이지 3페이지초반 기체문제는 이제 딸깍이다 하하 근데 또 모르지...
-
옯아싸라서 14
-
이게 왜 계산이 안되지.. 이래사 엄마사 진학사보다 텔그를 좋아하셧구나… 엄마미안..!
-
곧 2월이네 8
시간빠르다 그쵸
-
적었다.
-
작년에 김기현t 킥오프 아이디어 꾸역꾸역 6개월만에 완주하고 기생집 하다 너무...
-
칠가이 2
못생겼어
-
절대 성적이 부족해서 그런 게 아님
-
받아보겠습니다
-
ㅈㄱㄴ
-
페이 관련해서 여쭈고 싶은게 있습니다. 댓글 달아주시면 감사하겠습니다.
-
요즘 유독 그렇다
-
나는 그래프 그릴때 누군가는 속옷을 벗네 재밌는 세상이야
-
성관계 미끼로 노숙자들 유인한 '여장남자'…술 마시자 '돌변'[사건의재구성] 7
(부산=뉴스1) 조아서 기자 = 2016년 6월 28일 부산 동구 한 주택. 60대...
-
근데 재밌었음...!ㅋㅋㅋㅋ
-
맞팔해놓고 팔로우 끊는거 ㅈㄴ짜치네ㅋㅋ
-
안될거같기도 하고
-
생1 커리 질문 0
오늘 생2에서 생1로 바꿨는데 백호 윤도영 한종철이랑 시대..? 있는지 모르겠네...
-
흡
-
ㅈㄱㄴ 대치나 목동
-
문돌이가 왤케많음
-
오랜만입니다. 사실 마지막 업데이트는 수능 직전이었는데, 앱스토어 개발자 계정...
-
근데 제가 쪽지해본 분들은 개인적으로 다 될거같음 오르비답게 문돌이도 다들 잘함ㄴㅎ
-
24수능 20번 풀어봄 ㅋㅋ 생2 시작 1일차 근데 이거 몇분정도 내에 끊어야 함?...
-
11시까지 같이 있겠다고 9:45부터 대기타다가 종 치자마자 셔틀 타는 척...
-
ㄱㄱ
-
ㄱㅊ겠지?
으아 글이 별로다
뭔가 채찍피티같아요
7ㅐ추
벌써 특수마인드 장착 잘했네
ㄹㅇ 푸는 순서가 딱 저게
정석적임
독자에게 극단적 선택을 권유하는 칼럼