-
ㅠㅠ
-
ㅇㅈ 1
나의 정체성 아이유 팬클럽 회원 9기
-
"04" 아직도 이상할 정도로 수가 많음
-
넌 의대가도 안되겠다 << 고수
-
ㅇㅈ못하는이유 4
오뿌이들 다 나한테 반할까봐
-
단합 잘되네 04
-
킥오프 유형코드? 이런 거 교재 풀까요? 메가패스있습니다. 쎈은 너무 내신틱한가 싶어서요
-
예비고2고 과중이라 물화생지 다하는데 화학 화학식량과 몰, 생물 막전위/근수축 기출...
-
아..오늘부터 댓글도 안달아야겠다
-
https://orbi.kr/00071339995 시발ㅋㅋㅋ
-
넌 의대가라 넌 의대가도 안되겠다 님 이럴거면 ㅇㅈ하지마세요 짜증나 ㅡㅡ 아...
-
재수임-> 시간 많음, 안정적 고득점 중요함 이라서 약간 고민되네요 암기 못하는데...
-
작수 21번 첨볼때 진짜 말도안되는짓하다가 시간버리고 다시왔을때 3분컷함.....
-
ㅈㄱㄴ
-
세지가 워낙 검색해도 뭐가 안나와서 질문글 씁니다.. 제가 세계지도에서 사하라 이남...
-
어때? 자퇴생이라 수시 6장 다 버릴바에 6논술 쓰려고 논술할 시간에 딴 거...
-
앞으론 ㅇㅈ글엔 ㄹㅈㄷㄱㅁ 대신 #~#을 달아야겠다 3
저게 진짜 극찬이라며?
-
대학 다닐때 5
본가가 대구 이러면 서울, 경기권 쪽 대학 다니시는 분들은 얼마에 한번 씩 본가 가시나요?
-
딱봐도 공부해야성공할거같은 얼굴이라 "넌 공부해야겠다" 이랬다가 그 친구...
-
네 알겠습니다..
-
단국대에 연대과잠을 굳이 입고올 이유가 있나요? 학부모총회때 아빠가 아무리...
-
ㄱㄱ
-
몸무게는 많이 나가서 뛰지는 못하고 런닝머신 기울기 10에 속도 4.5로 걷는데 이것도 힘듬
-
목 길게하는 방법은 없나 목이 길어야 얼굴이 작게보이던데
-
ㅎㅌㅊ - 아직 본적 없음 ㅍㅌㅊ - ㄱㅁ ㅅㅌㅊ - 욕함
-
....
-
알파면 차단할게요~~ 그리고 미리보기 방지사진 올리셔야합니다 안그럼 저처럼...
-
ㅇㅈㅎㅈㅅㅇ 4
새르비 오랜만에 보는데 재밌네요
-
진짜 점수 올려줄 수 있는데
-
솔직히 이런얘기를 하는게 창피하지만….하 솔직히 읽을때 잘 이해가 안가는데 이건...
-
이정도로 마셔본적이 없는데.. 하 머리아파
-
일단 술 풀린 06은 1월은 매일 달릴 거임
-
자허불알빨기
-
내일 2
티원 경기다 부히힣
-
그런건 업음 게속하셈
-
쥬 ㅇㅈ (5초뒤 펑) 13
-
ㅇㅈ할만할 얼굴이었으면 진작했겠지
-
토익땜에 고3때도 잘 안했던 영어공부만 하니까 개노잼이여서 n제좀 오랜만에 풀었는데...
-
진짜 아니죠? 단국대학생들이 대다수인 모교축제에서 진짜 어쩔수없이 입게될 상황이...
-
근돼 팔ㅇㅈ 10
한의대 가면 폭풍 추나 가능?.
-
충혈 아님. 걍 밝기때문에 그럼.
-
집에 다 가져가는데 민폐인가 가져가도 된다고는 했는데 5개는 좀 많은가 다 맛도리만 남았는데
-
주변 재수 하는 애들 세지 많이 하네 왜지?
-
강평의 새 시대 2
-
ㅇㅈ 29
-
아
-
ㅈㄱㄴ
으악 싫어
끄아아악
님도 레츠고우
우왓
호우
진짜 베르테르 모든문제 다 풀고나니깐 기벡때 눈이 틔였었는데..
진짜 신인가..
https://orbi.kr/00071055832/%EB%B2%A0%EB%A5%B4%ED%85%8C%EB%A5%B4-%EB%AA%A8%EC%9D%98%EA%B3%A0%EC%82%AC(%EC%9A%94%EC%A6%98%EC%9D%80-%EB%AA%BB%EA%B5%AC%ED%95%A8)
베르테르 모의고사도 풀어보세요 (제가 올린건 아닙니다)
일단 제한시간이 130분이라는거부터 심상치 않네요 ㅋㅋ
저 기하 베이비이기 때매
n제부터 차근차근 하겟습니다
꼭 풀게요 감사합니다
뿡댕이님..이거 공벡풀이가 그냥 두개 직선 방정식 세워서 두 평면잡고 외적하고 거리공식맞나요..?
으악 내눈
님도하샘
풀다 때려치움
바보 바보바보 바보바보
힌트입니까...?
아 좌표푸리
잘랬는데
이거 어캐푸러요 좌표 안잡고
수직수직 열심히 이용하시면되요
두 직선사이의 거리가 둘다 수직일때니까
좌표푸리 절대안하고 풀겟습니다 오케이
12맞나여.. 근데 아무리봐도 공간벡터 안쓰면 너무 어려움
네 맞아요..
혹시 푸리 공유 가능하신가요
저 공간벡터를 썻습니다
지금 '기하' 의 지식으로 베르테르를 푸는건 좀 무리인 것 같아서 저는 비추드리겠읍니다
혹시 좌표풀이인가요? 평면방정식 세워 푸는건 할 수 잇겟는데 공간벡터를 어캐 활용하는지가 궁금하네요
글고 어차피 저는 수능볼 것두 아니고 취미로 하는걸라 갠찮아요
아놬ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
우선 좌표축을 써서 RS'과 PS의 벡터를 잡아봤구요
RS'벡터와 수직인 벡터는 (A,0,B)가 되어야하고
그러면 y의 구성요소가 0이 되면서 PS와 수직인 벡터는 (-1,0, sqrt3) 이 되어야해요
근데 그냥 평면 alpha 위에서 마침
P'S'의 중점이자 RQ의 중점인 점을 M이라고 할 때
RM의 길이가 루트3, M에서 직선 PS까지 위로 수직으로 올라간 길이가 3이 되면서
문제에서 거리를 묻는 두 직선에 수직이라는 조건을 만족합니다
그 두 직선에 수직인 선분의 길이를 재보면 루트12가 나와요
와우....대단한 직관인데요
저는 방정식 다 세워서 푸는 풀인줄 알았는데
차원이 다르네요