[모든 참인 명제는 부정해도 무모순임 증명]
게시글 주소: https://o.orbi.kr/00071403001
증명이란
공리에서 결론을 도출하는것
공리가 참이면 결론이 참
대우
결론이 거짓이면 공리가 거짓
공리는 참이라는 증명이 없음
따라서 귀류법 증명이 없음
따라서 공리를 부정하면 무모순
이말은 공리가 거짓이면 무모순
결론이 거짓이면 공리가 거짓
공리가 거짓이면 무모순
따라서
결론을 부정하면 무모순
1. 공리를 부정하면 무모순
2. 결론을 부정하면 무모순
모든 참인 명제는 공리거나 결론이다
따라서
모든 참인 명제는 부정하면 무모순
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
교사 쥐꼬리만한 월급 쳐받으면서 애는 어떻게 감당하려고 저리 당당하게 ㅂㅅ짓 쳐하지...
-
수탐도 잘나와준다 (1등급) > 한의대 수탐이 그럭저럭이다 (2등급) > 연세대...
-
이젠 진짜 더 안할거라고...
-
엄마가 자기 차로 픽업 안해주고 택시타고 오라해서 나랑 차별한것같아서 서운하다는데...
-
두과자
-
옯만추는 어케 하는거임
-
맨날 만나자고 올리잖아
-
내 인생 시나리오 11
여친 모집글로 100억잇는 여친 사귐 100억을 비트코인에 넣음 200억을 만듬...
-
https://youtu.be/uAxXG-BdEmA?si=ACbVJszAas5R-5x...
-
다른 두명이랑 약속잡아서 그 둘을 만나게 하는건 재밌을 것 같음
-
예비고2고 수1 노배상태에서 시발점이랑 워크북 두개 끝내고 쎈 푸는데 딴 파트는...
-
내가 미적을 다시는 안 하기로 결심한 결정적 이유 22
방금 밑에 글 보고 몫의 미분법을 떠올려보려고 했으나 기억이 안ㅋ남ㅋ ㅋㅋ ㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
조졌음 6
두각인데 앞자리에서 이상한냄새 개많이남…
-
다 밥약이였음 그래서 첫인상 물어보니까 하는 말이 “오르비 할 것 같이 생겼어요”...
-
이름이 왜 몫의 미분법이죠..?
-
선을 넘자 8
원래 주인공은 선을 넘는 거야 균형은 나머지 사람들이 잡아주겠지 우린 우리 삶의...
-
난 준비됏음
-
나도 좀 나대면서 나름대로 자의식갖고 살겠다는건데 문제있음? 꼬우면 너네도 이렇게 하던가
-
별건없고 제 세계정복의 동료가 되어주시면 됩니다
-
원하는 스펙 돈 100억잇어야댐 쿨뷰티미녀여야댐 내가집밖에안나가도뭐라고안해야댐 내...
-
이 문제 정답률이 이거 밖에 안된다고? 싶은게 많음 근데 공통 보면 공부 시간을 다...
-
어렵다어려워
-
발표를왤케안함 3
-
평소에 하던 볼륨인데 토할거같애
-
옯만추는 34
가끔은 할만 한 것 같아요 지역이 같거나 학교가 같으면 시간 내서 밥약할만 해요...
-
정보의 본질에 관하여 20.11 베이즈 주의 “연속적 이항대립과 불연속적 이항대립”...
-
서럽다 서러워...
-
11-15라인 조금만 더 어렵게해주지 특히 11번 12번 13번은 너무 했음 14번...
-
초딩때 인기 많았는데 이거
-
진짜 누구 듣지? 일단 현우진은 너무 무겁다는 느낌이 들긴했음 근데하도...
-
난 이제 장발이야
-
발표를 도대체가 왜 안하는거야 ㅅㅂ 엑셀 클릭한번이면 되는걸 사람 피말리게
-
개나줘라 병신아 걍 우선 실모배틀 이길 실력부터 만들고 예의를 쳐따져야지 난...
-
아마존에서 시켜서 까먹고 있었는데 이런게 행복이구나 너무 멀리서만 보고 있었나뵈용
-
전북치 0
8명 뽑고 예비번호 19번인데 합격 가능?? 진학사 보니까 꽤 돌거 같긴 하던데
-
인생리롤 ㄱㄱㄱㄱㄱ
-
미사카 미코토 9
-
1. 도형문제 난이도 하락 (230913급은 안나올듯) 2. 수2킬러삭제...
-
심심하니까 질문받아봄 12
아무거나 물어보세요 학습부터 오늘 밤 반찬 추천까지
-
그런걸지도
-
안녕하세요, 수능 국어를 가르치고 있는 쑥과마늘입니다. 지금이 아니면 써볼 일이...
-
-수염 레이저 제모 (여성분들은 겨드랑이 등) 면도 귀찮음 해방은 덤이고......
-
95점받음
-
통학할때 이어폰필수일거같은데
-
사탐런 고민중인데 자세히 알려주실 분 구해요..
-
600~700이상이네 왜 이런거지
-
문과로 바꿈. 이번 설때 커밍아웃했는데 난리 났다 나랑 동갑인 애는 메디컬 간다는데..
제가 수학 전공자는 아니라 정확히는 모르겠는데, 참인 명제는 해당 공리들로부터 도출되기 때문에 공리를 부정해도 무모순이라는 것이 곧 참인 명제를 부정해도 무모순이라는 결론으로 이어진다는 건가요?
참인명제가 결론인 경우 결론이 거짓이면 공리가 거짓이고 공리가 거짓이면 무모순. 따라서 참인명제(결론)을 부정해도 무모순.
공리는 참이라는 증명이 없음
따라서 귀류법 증명이 없음
따라서 공리를 부정하면 무모순
참인명제는 공리거나 결론이기 때문에
참인명제를 부정하면 무모순
그렇다면 쿠쿠리님의 증명 또한 어떠한 공리계 상에서 이루어졌기 때문에 부정해도 무모순 아닌가요?
맞습니다
그렇다면 이 증명에 어떠한 의미가 있나요?
어허 감히 쿠쿠리님에게 이의를 제기하다니 불경한것!
모든 참인 명제를 부정해도 무모순이죠..
1+1=2를 부정해도 무모순이죠
감히 이의를 제기해서 죄송합니다 제가 죽을죄를
ㅋㅋㅋㅋㅋ