정말 멋잇는 문제 2
게시글 주소: https://o.orbi.kr/00071149712
6x6판이 2x1의 조각으로 덥혀있다. 이때 항상 이 판을 두 직사각형으로 나눌 수 있음을 증명하여라. (어떤 조각도 두 개의 직사각형에 걸쳐있지 않다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
‼️우석대학교 약학과 25학번 새내기 여러분을 찾습니다‼️ 1
안녕하세요 제 41대 우석대학교 약학과 학생회 ☘️우연☘️입니다. 우선 우석대학교...
-
매달 10만원씩 돌려준댔던거 같은데 어디서 하는지 안보이네용 ㅜ
-
감이 안잡히네 작년보다는 적게도는건 확실한데
-
탈릅 5
탈릅할거임뇨 덕코 선착순 2명한테 주고갈게요
-
수시애들 OT가네 ㅅㅂ 10
-
중경외시라고 하면은 보통 명문대의 마지노선에 속하기 마련이다. 그런 만큼, 중경외시...
-
무슨 심리에요???
-
아직도 안 들어온 표본들은 그냥 스나 갈긴 허수로 봐도 되려나요...
-
라고 하기엔 이제 두 달 됨
-
수학학원 고민 0
제가 지금 수학학원을 다니면서 현우진T를 수강하고 있는데요 저희 학원에서 방학만...
-
혹시 고교 유형하고 3년 총내신이 어떻게 되시나요? 세특 많이 좋음? 특히 설경영...
-
하..
-
속보)교수피셜 연 >고 15
연대가 더 똑똑하다
-
액셀 셈퍼는 0
같은 표본이면 시간이 지날수록 후해지네요
-
수1 수2 융합문제가 없을까 내면 그거 나름대로 충격인데
-
삼수 대학생활 3
혹시 미필삼수생은 대학생활하기 힘든가요,,?MT나 OT는 못가겠죠ㅠㅜ
-
공허가 밀려온다 7
슬프다 좀 더 잘해줄껄
-
밸런스 게임 0
현역으로 서울대 컴공괴 합격 vs 3수해서 광운대 국문과 합격
-
서울대에서 전체 ABC 비율 통계같은 건 발표 안하나요? 작년 서울대 인문계열에서...
-
어디까지가 메쟈의고 어디까지가 인설의지 전 넘보지 못할 레벨이라 그냥 그런갑다...
-
성균관대 합격생을 위한 노크선배 꿀팁 [성대25][밥약하기 좋은 맛집 추천 3탄] 0
대학커뮤니티 노크에서 선발한 성균관대 선배가 오르비에 있는 예비 성균관대학생,...
-
혹시 2
추합 1번도 떨어질 수 있을까? 연대 신학인데 점공 상 앞분들 몬가 한명도 안...
-
수시로 넣으세요? 15
야해요ㅠㅡㅠ
-
마감직전 실지원 40명쯤 잇엇는데 2등이엇고 총 55명 지원 했습니다 점공은 15명...
-
나군에 서울대 공과대학 지균 썼는데 학교에서 지균 학교장추천 접수했는지 제가 확인할...
-
ㅈㄱㄴ
-
이 사람 진심 6
서울대 버리고 여기 올건가??
-
근데 올해는 설높공과 의대 동시 합격이 많아보이는데 2
그럼 설 높공 갈까요? 아님 의대 갈까요? 설 높공 지원자들 중에서 메자의 합격...
-
학원에서 너무 어려운 문제만 풀려서 약간 불안?해요. 시발점 본교재 워크북은 다...
-
중앙대 경영학과 입니다 등수 괜찮은지 굼금합니다 3바퀴는 돌아야 괜찮을거같네여 ㅜㅜ...
-
조그만 은반지 같은거 사볼까..
-
날짜 언제로 배정됬는지 연락주시면 만나서 인사해요 - 외로운 아싸 옯붕이가
-
계산기로 예상 5바퀴 중간쯤에 드가잇는데 이거킹능성잇나,
-
점공계산기 2
엑셀로 보는데요 max랑 min이 뭘 의미하는지를 잘 모르겠어요
-
결과는 그에 상응하지 않아서 좀 서럽 ..
-
미적분 밖에 하지않은 예비 통계학과 학생인데 확률과 통계 공부를꼭 해가야할까요...
-
1. 화공은 기계, 반도체 다음으로 물리를 많이 하는과임 -> 대부분 모르고 지원함...
-
점공률 42퍼 0
더 안들어오려나
-
ㅆㅅㅌㅊ임..? 1종 보통딸거임뇨
-
입갤 9
-
[속보]尹측 "'도피설' 거짓 선동에 자괴감..기소하면 응할 것" 4
윤석열 대통령 측이 수사기관의 체포영장 집행 시도에 대해 "기소하거나 사전구속영장을...
-
(pi)^2-e만큼 아파요
-
돈은 상관 없으면 걍 기본 가는게 맞나요?? 그리고 남자 42, 46미리 중에 뭐가...
-
깡표점이 미친놈이라 올해만표 72 작년만표 73 재작년만표 73 경제 웨않함?...
-
2025 서바 1-8회 수준으로 내면 됩니다ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 너무 갓나?
-
화1단♥️
-
문학 교육청 기출만 모아놓은 문제집 있음?
알았어
이 문제 레전드야 개 쩌는 퀄리티야 멋진 문제야
참고로 1963년도 문제임뇨
우리 엄마도 없던시절이네
??
난 1000만원을 걸지 반례를 들어봐라
??
항상이라는건
임의로 첫 조각을 아무렇게 놔도
두 큰 직사각형으로 나눌 수 있단거임?
임의로 2x1 조각을 아무렇게나 배치해도 나눌 수 잇단거
두 직사각형이라는게
2×1의 테두리를 따라가는 큰 직사각형인거임?
어떻게 2x1을 배치해도 단층선이 하나 이상 나온다는 것임뇨.
내가 이해한게 맞구만
오카이
힌트
귀류법임?
원래 풀이는 귀류법 맞
오케이
이런류 문제 종종 체스판 가지고 풀던데 이것도 그건가요
체스판 가지고 푸는게 먼지 모루겟어요
https://orbi.kr/00067151715/
요런 느낌임 ㅋㅋ 이 문제는 아닌가보네용
컬러링 문제군요, 이 문제는 컬러링 문제는 아닌드읏요
힌트..
귀류법으로 단층선이 없는 배치가 있다 가정하고,
단층선을 없애려면 도미노가 18개보다 많이 필요해서 모순임을 끌어내면댐뇨
오켕이...
선이 없으려면, 1-2, 2-3, ... 5-6 을 잇는 도미노가 모두 어딘가에 존재해야함.(가로, 세로 모두)
세로로 1-2를 점유하는 도미노가 하나 존재하면, 1번행이 5칸 남고, 가로로 누운 도미노로는 이를 채울 수 없으므로 1-2를 점유하는 도미노는 항상 짝으로 존재함.
이러한 사실을 기반해서 같은 논리를 반복하면, 2번 행에서 3칸을 남겼을 때 1-2행을 추가할 순 없으므로 나머지도 짝으로 존재함. 즉, 세로로 배치된 도미노가 10개 이상 있어야 가로 선을 없앨 수 있음.
또한, 가로세로에 대해 일반성을 잃지 않으므로 가로 세로 각각 10개 이상 있어야 한다는 결론을 얻을 수 있고, 총 칸수가 36이라는 모순에 도달한다.
와 정답 ㅋㅋ 이것도 푸실줄이야
아까 잠깐보고 포기했었는데 다시 좀 삘받았어요 으흐흐
문제가 ㄹㅇ 멋잇음뇨. 63년도 문제고 이게 가지문제 (a)고,
(b)는 8x8일 때도 (a)가 성립하는가? 임뇨
호오.. 러프하게 봤을 땐 필요한 갯수는 일차로 증가하는데 총 칸수는 제곱으로 증가하니까 같은 방식의 증명은 어려울 것 같긴하네요
이사람 신인가
으흐흐
가로세로연구소밖에 몬알아들음