수학 작년 7모 미적 29번 질문
게시글 주소: https://o.orbi.kr/00069766444
작년 7모 미적 29번 문제입니다.
해설에선 도함수가 연속이기 때문에 함수가 연속이라
(가)에서 추론되는 f(1)의 좌극한 값과 (나)에서 추론되는 f(1)의 함수값이 같다고 나와있습니다.
그런데 도함수가 연속이라 나와있지만 함수 또한 연속임을 이 문제에서 알 수 있나요?
물론 적분값이 나오려면 연속이여야 하겠지만 문제에서 어떻게 연속임을 추론할 수 있는지 궁금합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
도함수 연속은 항상 원함수 미분가능
하지만 미분가능하다고 해서 도함수 연속은 아님
근데 저기서 조건이 도함수 연속이니 미분가능이니까 자연스레 원함수 연속
미분가능한데 도함수 연속이 아닌 케이스가 어떤게 있을까요?
f(x)= x^2sin1/x (x=/0)
0 (x=0)
?
도함수가 연속이면 원함수는 당연히 연속