폭발원리가 개소리인 이유
게시글 주소: https://o.orbi.kr/00069518123
서로 모순되는 두 명제를 만들고, 둘다 참이라고 가정한다.
(예: 삼각형의 내각의 합은 180도다. 삼각형의 내각의 합은 180도가 아니다.)다음으로 방금 만든 명제를 이용해 선언명제를 하나 만든다.
(예: 삼각형의 내각의 합은 180도이거나 1=2이다.) 이 명제의 전건이 참이므로 후건의 내용과 상관없이 이 명제는 참이다.그러나 처음에 '삼각형의 내각의 합이 180도가 아니다'라는 명제 역시 참이라고 했으므로 이 선언명제의 전건은 거짓이다.
방금 이 선언명제가 참이라는 것을 증명했으므로 전건이 거짓인데도 참이 되기 위해서는 후건(1=2이다) 역시 참이 되어야 한다.
(2)~(4)를 통해 명제 '1=2이다'는 참으로 증명되었다.
애초에
A.[삼각형의 내각합은 180도] B. [삼각형의 내각합은 not 180도]
A와 B가 둘다참이라고 했으면서,
왜? 3번에서 B가 참이므로 A가 거짓이라고 하는거임??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아 인증뭐임 1
못봤잖아
-
FULL CHANGE 생각이 완전히 바뀐다 내가 새롭게 바뀐다! 내가 완전해지는...
-
1~9 무난한 문제들 9번에서 삐끗해서 두번푼건 비밀 10 계산하기 편할거같은...
-
저는 수학만 쳐패는중
-
국어 > [강대모의고사K 10회] 공통, 화작 > [수능특강 독서] 3부 2회...
-
이감만 보면 0
3-1-1-1-1-4 이게 맞냐고 안정된듯 하다가도 ㅈ박아버리는 개같은...
-
피곤하다 피곤해
-
이게 무슨 인생이야
-
ㅇㅈ하면 안댐
-
풀 때 22 28은 일단 제끼는데요, 시간이 애매하게 남았을 때 어떤걸 먼저...
-
아 수학 어렵다 0
하
-
생윤 ~에 대한의무 , ~에 관련한 의무 뭔차이임? 6
인간에 대한 의무 인간과 관련한 의무 동물에대한 의무 동물과 관련한 의무
-
그냥 서바는 아주 잘 풀리는데 서바 리부트풀면 멘탈 터지고 그날 하루종일 기운 쫙...
-
메디컬들도 사탐을 더 풀려나요 저는 개인적으로 이제 수능은 최저 맞추는 용도로...
-
마법의 요정 10
달이 기울고 별무리가 흐르는 어느 야심한 밤, 오늘도 힘든 실모 러시를 끝내고...
-
현장응시가 6평 단 한 번밖에 없었다는 것임... 6평때도 긴장감 지렸는데 수능은...
-
몸상태가 이상함 1
어제는 몸은 안피곤하고 정신이 피로했는데 오늘은 몸이 피곤하고 정신이 밝음
-
평가원 점수 1컷에서 2컷극 초반 나오고 김승모도 못쳐도 2등급 이내로 나오는데...
-
일단 상식도 풍부해지고 재밌는 판례도 많고 전문직도 될 수 있음
-
나는 바보다
-
보정 표점 백분위 등급 어떻게되나용
-
어..? 4
몸상태가 조금... 불길한데
-
두루미 가족 13
-
뭔가 다들 대단한게 10
나는 현역 수험생활 때 하루 아침에 늦게 일어나거나 뭔가 컨디션 조지면 늘 그날은...
-
아과기준 진짜 대애애애충만 라인정도만 잡아주심 고맙겠음 언미영생지 95 80 1 50 41
-
흐아아아아아아암
-
문과 성대 11
대충 어느정도면 가지? 수학 높3이거나 2등급이라는 가정하
-
국어 : ebs 엄선경으로 문학 전체 복습 때리기 Ebs 독서 경제 물리지문...
-
14시간 잠 14
인생 좃망 재수생 ㅁㅌㅊ
-
왜 그딴식으로 풀리는지 걍 화가 ㅈㄴ남 하..
-
수학 남은 기간 3
기출이랑 지금까지 푼 사설 다시 풀기+모고 어떰? 다들 어케할거임?
-
오느레 추천곡 1
개찐따라 옛날것만 계속 재탕해서듣는중.... 홀홀홀...
-
나형사탐에서 언미생1화2까지 우여곡절이 참 많았지만 제 걱정과는 달리 영어 한국사...
-
병원갈지말지 고민중 11
흠냐뇨이
-
이번 고2 영어가 엄청 어려웠는데 수능은 이거의 얼마정도로 더 어렵나요?
-
고양이 7
감정이 고양되네요 깔깔
-
겨울부터 시대인재 라이브 들으려는데 낮은 2등급한테 어떤 강사 분이 좋을까요?...
-
수면 맞추기가..... 시간 맞춰 23수능 풀려했는데 걍 풀어야겠네
-
이감 6-3 88 이해원 파이널 0회 100 국어만 좀 하자
-
무한로딩중
-
전 순댓국밥
-
오늘 오픈이라고 했는데 왜 소식이 없지….
-
파이널만 봤을땐 뭐가 더 고난도인가요?
-
대략 평가원 시험으로치면 몇번대 난이도임?
-
차라투스트라가 누굴까요 15
퀴즈입니다.
-
드럼vs 일렉 5
추천좀
-
걍 시발 화가 존나 남 하…..
-
언매황님들 5
실모 해설에서 얹고 -> 언ㄷ고 (음절의 끝소리 규칙) -> 언꼬 (자음군 단순화...
-
15학년도 수능에 나온 무영탑을 풀어봤는데 궁금한 게 주만이 아사달을 사모하고,...
@논리화학
빨리빨리
안온다매
우리게이 꾸준하노
닉값ㄹㅈㄷ
이글이 마지막임
질가
굿데이투다이
ㅋㅋ
그래 얼른 잘가
P에 대해 참이랑 거짓을 둘다 참이라 가정했잖아
P, ~P
P가 참이면 당연히 ~P는 거짓이지
이새기는 쉴드를쳐줘도 못알아먹네
님 뇌에 문제있음? 1번보면 P와 not P가 둘다 참이라고 처음에 전제를 했는데 그걸 왜 뒤에서 깨냐고
P가 참이면서 거짓이라고 가정한거지 병신아
서로 모순되는 두 명제를 만들고, 둘다 참이라고 가정한다.
가정이 틀렸노
물론 일반적인 유클리드 평면이라 가정할 때
아니씨발 P가 참이고 ~P가 참이면 P는 참인것도 맞는데
정의상 ~P가 참이니깐 P가 거짓이라고요
도대체 왜 내말을 못알아먹지?
P와 ~P 둘다 참이라고 처음에 전제했고, 나중에 그걸 정면으로 무시하잖음
ㄴ 폭발원리 증명상 동시에 참인걸 가정한건 맞음
진짜 답없다
얘는 병원에 몇 달 있어야겠네
애초에 거짓이면서 참인게 전제잖아
P랑 ~P 둘다 참이라며
그러면 ~P는 거짓 P는 거짓인것도 부정의 정의에 의한건데?
아니 그냥 P가 참이고 ~P가 참이다 라고 했으면서 왜 뒤에서 뒤통수치냐고여
P가 참이고 ~P가 참이다
iff
P는 참이고, 거짓이다
씨발 이게 이해가 안됨??????
P가 참이라면서요
사실 한가지알려드리면
Iq가 100이안되는친구입니다
이건알려드려야할거같네요
그니깐
지금 P가 모순이라고 가정했잖아요
여기까진 인정?
분명히 1단계에서 P와 not P를 둘다 참이라고 했는데 뒤에서 하나가 참이니 나머지가 거짓이다 이 ㅈㄹ왜 햐나고요 씨발 둘다참인데
P가 모순이라고 가정했는데
님은 왜 모순이냐고 화내는거임
모순이 가정인데 왜 모순이냐고 화내는거라고...
아니전제에서 P와 not P를 둘다 참이라고 했으면서 왜 뒤에와서 P가 참이니 not P가 거짓이다 이지랄병떠냐고요
그러면 이렇게가자
P는 참이다. P는 거짓이다
이것도 모순이니깐
이렇게 두 명제를 동시에 가정하고 증명하면 인정함?
아뇨 처음에 분명히 P와 not P가 둘다 참이라고했음
그니깐 저 증명 니가 인정 못하니 버리고
P는 참이다. P는 거짓이다. 두개 써본다고....
그럼 폭발원리를 새롭게 풀게 되는건가요?
ㅇㅇ
1) P는 참이다. P는 거짓이다
2) P 또는 Q 둘 중 적어도 하나는 참이다.
3) P는 거짓이다
4) 둘중 적어도 하나는 참이므로 Q는 참이다
"둘중 적어도 하나는 참이다"는 어디서 온거임?
P가 참이니깐
P랑 Q 중 적어도 하나는 참이죠
P가 거짓이기도 하다메요
근데 P가 참이라는게 전제에 있으니 일단은 맞는말임
전제에서 단순하게 얻어낸거니깐
어떤 명제 P가 참이면
무조건 P or Q는 참이라는게 논리학이고, 또 당연한얘기임
아니 정반대로 P가 거짓이기도 하니까 P or Q가 참일 이유가 없죠
P가 참이면서 거짓인데 그중에서 참이라는 명제만 꺼내쓴거임
일단은 다 잊고 참만 꺼내쓰는게 가능하다고 인정하면 폭발원리 증명이 되는건 오케이?
너가 인정 안하면 너 세상에서 폭발원리는 틀린거겠지만
폭발원리 처음 설명 증명만 봐도 인류는 개ㅄ집단임
논리학은 너의 사례처럼 주관이 들어가면 증명이 이상해져서
순수하게 수식만 보고 기계적 판단이 가능하도록 발전했고 그게 기호논리학임
P가 전제에 있으면 P\/Q가 참인건 진리표로 증명되어있음
님이 P가 참인걸 꺼내썼듯이 저도 P가 거짓인걸 꺼내쓸수 있다고요
그래 난 대가리딸려서 이해 못하는줄알았네
그냥 개소리하는것같아서 증명을 인정하기 싫은거면 그건 이해함
근데 그럴거면 논리학을 쓰는 주장을 하지마
지맘대로 가져다가 쓰고있어...
똥싸면 기분좋다도 논린데 왜 기성논리학만 논리학임?
P가 거짓 and P가 참
P or Q
에서 P가 거짓이면 P or Q가 참일이유가 없음
https://ko.m.wikipedia.org/wiki/%EC%B4%88%EC%9D%BC%EA%B4%80_%EB%85%BC%EB%A6%AC
그러면 이논리학쓰세요
논리학도 종류많다
배중률(P or (not P)) 부정하는 직관주의 논리학도 있고
참 거짓말고 다른 진리치도 인정하는 fuzzy logic도있음
폭발원리자체가 이해하기 힘든건 팩트니깐 쉴드쳐줬더니 뒤에서 칼꼽지말고 대가리라도 좀 굴리고오세요
내가 뭔칼을꼬바여
대신 저런 논리학들을 사용할거면 저 논리학의 정확한 토대를 알고 잘 써야함
기성논리학적 기호와 정리들을 써서 뭔가 주장할거면 기성논리학의 정리를 다 인정해야지
당장 저 논리학에선 귀류법못쓴다네
배중률 부정하면 비모순율도 부정하는거잖음
P가아니면 ~p는 참이라고
그냥 정한거임 ㅇㅇ 꼬우면 니가 6천년전에 태어났어야지
처음에 1단계에서 P와~P가 둘다 참이라고 전제했는데 그걸왜뒤집냐고여
둘다참이면 모순임
그렇게 “정함”
폭발원리얘기하는데 뭔말함
배중률과 비모순율은 논리식변환시 동일해지는데 배중률을 부정하면 비모순율도 부정하는거아님?
배중률이랑 double negation(이중부정) (~~P = P) 두개를 동시에 부정함 서로 동치라
비모순율 ~(P /\ ~P)는 참이고
논리식 변환하면 ~P \/ ~~P인데
~~P를 P로 못바꿈.
컴퓨터에서 쓰는 논리학이라 니 직관이랑 다름 근데 정당함
아 그리고 배중률 부정하는건 직관주의/구성주의 논리학이고
폭발원리 부정하는건 초일관 논리학이라 서로 다름
논리학에서 ~P가 참이라는건 P가 거짓인거임 그냥 그렇게 명제논리가 가정되어있고 꼬우면 니가 논리학 만들어
기성논리학 ㅈ까라고 지금 이러고 있는 건데
힘빼지 마시죠
애초에 가정이 개소리인거에서 특이한 결론을 도출하는거고
가정이 개소리니 증명에 개소리같은게 있는거고
이새기는 쉴드를쳐줘도 못알아먹네
논화가 욕했엌ㅋㅋㅋㅋㅋ
무서운 사실: 실제로 삼각형의 내각은 180도일 수도, 180도가 아닐 수도 있다
비유클리드끼야악
퍼~벙(속이 폭발하는 소리)
누군가의 속
어어어
쿠쿠리 귀여워
이것도 재능 아니냐 ㅋㅋㅋ