아니진짜 왜이렇게 멍청한 애들이 많지..
게시글 주소: https://o.orbi.kr/00069291850
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
남들이 대학 졸업하고 회사들어가서 느끼는 상사스트레스를 학생때부터 느끼기 시작해서...
-
올해 보면 나이가 사반수고 응시는 세번째긴 한데 군대까지 껴서 오수까지 하는...
-
건국대 정시장학 0
정사 과1등으로 입학하면 장학금 같은거 있나요?
-
ㅇㅂㄱ 1
모닝 어싸 ㄱㄱ
-
연대 천컴이 0
2학년때 전공선택인데 컴공정원이 정해져있으면 1학년때 학점을 잘따야 가는건가요?
-
내가 미친거겟지...
-
뉴런 시냅스 1
예비 고3인데 뉴런 띰 개 끝날때마다 시냅스 띰1과씩 푸는 데 거의 다 틀림. 답지...
-
고2 모고 다 3떳어요 고1수학 중요하대서 가끔 고1 4점만 좀 풀어보려 하는데...
-
최애 설빙은? 7
난 딸기
-
삼수,군대,반수 6
일단 현역 때 52545였고 2025(재수)9모 때 생명 42점 지구 48(1번...
-
붙여줘라..! 애기도 많이 낳을게
-
본인 알바 계약을 오전부터 12시까지 했는데 내가 학원으로 첫출근 했음 계약한...
-
3년 전엔 다음 대선은 뉴섬이랑 디샌티스가 치르고 있지 않을까? 라고 생각하는게...
-
조사 들어간게 아니라 사장님 사업자 변경때문에 잠깐 막힌거라함 저도 메일로 보낸게...
-
1. 스마일 라식을 진행할 때/한 후 특히 주의해야 할 점이 있나요? 2. 일반...
-
Zanda 1
Yongzazal
-
씻은지 2일 된 줄 알악는데 생각해보니까 하루엿어요 다들 잘자용
-
탄핵소추 사유 1.줄곧 헌법과 법률을 위반하여 국법질서를 문란케 함 2.노무현...
-
잊력을 내영하세요.
-
체포든뭐든 7
계절시험6시간남은내가더좆된듯하다………
-
I'll be back on next dawn orbi
-
현역 내신 3-4등급 공부를 한번도 해본적 없었는데 수능은 국숭세단 라인이었습니다...
-
표점만 다르면 반영방식이 어케되는거예요? 만약 25생윤처럼 불불불로나오면 만에하나...
-
ㄷㄷ
-
올해4점짜리만 5000문제정도풀면서 3년동안 4점짜리 10000문제가까이풀면서...
-
단순히 글의 의미와 주제를 파악하는것 뿐만 아니라 필자의 음흉한 의도를 파악하는데도...
-
야식먹기vs자기 12
-
사문 1순위인 데엔 이견이 없을 듯하고 그 다음은 뭐가 있을까요?
-
이번 생은 호모로맨스 에이섹슈얼 안드로진이라 힘들다
-
이수린씨 이름이 너무 이쁜걸 어떡해요,,
-
그동안 설대는 안 알아봤어서 감이 안 오는데 대략 어디쯤이다 식으로 라인만...
-
이과 누백 1퍼 0
수능 몇틀 정도인가요 아니면 국수탐탐 각각 백분위로 몇 정도
-
일어나라. 주변이 어두워 앞이 안 보이는 것 같아도, 5
아직 밤이 아니다.
-
20등 초반대 점수 궁금해요 (진학사로 다른 대학 점공 봐서 못 봤어요)
-
왜 언매러들이 화작러들보다 10퍼 이상씩은 높은거임 언매는 아무나 하는게 아니다 이건가
-
공부는 안하고 쓸 데 없이 빡갤 오르비 뒤져보며 강사 이름 하나하나 쳐보고 있네...
-
눈팅만 할때는 딥피드만 봤는데 이젠 모아보기가 제알 재밌네
-
반가워요 2
저는 시험(수능아님)공부중입니다...ㅠ
-
잘자요 10
대답안해주면 얼굴 무브링 넝당 ㅎ
-
이틀차 ㅇㅈ 26
응디에 생긴 빠따와 회초리 자국
-
이녀석 언제 눈치깜?
-
잘자 2
바이바이
-
게임동아리 1
가면 롤하나요?
-
수린이 왜 반갑지 10
다른 이상한 빌런들 겪다보니 좀 취향이 특이해서 그렇지 애는 착해보임
-
자기야 ㅎㅎ 2
나랑 같이 자장
-
몇 점 정돈가요??
-
오히려 이렇게 당시 6평 22번 킬러문항 아니다했었음
-
10일이면 낫는다 했는데 이제 7일지남.. 문제는 멍이 안없어짐 ㅅㅂ 얼음찜질과...
나도 전적으로 동의함!
모순 : p,q 명제가 동시에 참일 수가 없다.
p : true / q : false
p : false / q : true
거짓은 그냥 false
둘이 필충이 아닌데요
아니 본문식이 틀렸냐고요
모순<->(p and not p)<->거짓
도대체 이게 뭐가틀림?
모순명제의 진리값이 거짓인건 맞는데, 거짓이라고 무조건 모순명제인 건 아니라서
p and not p -> 거짓
이 맞는 것 같아요
(p and not p)의 값이 거짓이니 거짓과 동치라는거임
1. 진리값은 명제가 아니기 때문에 모순명제와 거짓을 동치라고 볼 수 없다.
2. p and not p라는 모순명제의 진리값이 거짓이기 때문에, 그것의 부정인 무모순명제의 진리값이 참이 되는 것이다.
저는 이렇게 이해했습니다..!
명제(命題, proposition)란, 참이거나 거짓인, 즉 진릿값을 갖는 것을 말한다.
명제의 정의는 진리값을 가지는것이기 때문에 "거짓" 자체가 명제일수있음
"false"도 명제라고 할수있어?
ChatGPT의 말:
ChatGPT
네, "false"도 명제라고 할 수 있어. 명제는 참(true) 또는 거짓(false)을 나타낼 수 있는 문장을 말하는데, "false"는 그 자체로 거짓인 명제를 의미해. 다시 말해, 명제는 그 값이 참이든 거짓이든 상관없이 하나의 논리적 단위로 취급돼.
참여하지 말고 지금 도망가세요
시간만 뺏깁니다
헉 넵...ㅠ
내일 금요일(2018.08.24)은 태풍으로 학교 임시휴업일입니다.
등교에 참고해주세요. 참고로 담주 월 7교시(과학)합니다.
비추버튼입니다!
진리값을 갖는 거지, 진리값 그 자체가 명제는 아니니까요
"false"도 명제라고 할수있어?
ChatGPT의 말:
ChatGPT
네, "false"도 명제라고 할 수 있어. 명제는 참(true) 또는 거짓(false)을 나타낼 수 있는 문장을 말하는데, "false"는 그 자체로 거짓인 명제를 의미해. 다시 말해, 명제는 그 값이 참이든 거짓이든 상관없이 하나의 논리적 단위로 취급돼.
아니요, 진리치는 명제가 아닙니다. 진리치는 특정 명제의 참이나 거짓을 나타내는 값이며, 독립적인 문장이 아니기 때문에 명제의 정의를 충족하지 않습니다. 명제는 참 또는 거짓으로 평가할 수 있는 문장을 의미합니다.
chatgpt는 믿을게 못 됨
명제(命題, proposition)란, 참이거나 거짓인, 즉 진릿값을 갖는 것을 말한다.
그렇다면 진리값을 가진 "거짓", "참"도 명제아님?
거짓은 어떤 진리값을 가지나요? "A는 거짓이다" 라는 문장은 진리값을 가질 수 있지만 그냥 "거짓"이라는 문장은 진리값알 가질 수 없고 애초에 문장도 아닌 것 같습니다.
P&~P가 (p and not p)이고
F가 거짓입니다.
P&~P↔F와 (p and not p)<->거짓은 같은 논증입니다.
(T and F)->F 같은건 뭐임?
저는 그러한 논증은 아직 본 적이 없는데 어디에서 보셨는지 말씀해주실 수 있나요?
외국사이트에서요
제가 아는 선에서는 T,F는 명제가 아닌 걸로 알지만 T, F도 명제라고 가정한다 했을 때 T, F는 어떤 의미를 가지나요? 아무런 의미를 가지지 않는다면 명제 T, F에 대한 논증자체가 불가능할 것 같습니다.
T는 true고 F는 false죠
'푸르다'라는 서술어는 그자체로는 의미를 가지지 않잖아요. '하늘이 푸르다.'처럼 주어와 결합하여 문장이 되어야 의미를 가지게 됩니다. 그런 것처럼 'T', 'F'도 'P는 T이다.'처럼 어떠한 명제 P를 주어로 결합해야만 의미를 가지는 것으로 알고 있습니다. '참이다.'라는 것 만으로는 아무런 의미를 가지지 않는 것 같습니다. 이러한 점에서 'T', 'F'는 아무런 의미를 가지지 않는 것 아닌가요?
T는 true의 약자고 TRUE는 말그대로 참이라는 의미라고 생각함
무엇이 참이다 가 아니라, 그냥 "참" 이라는거임
P&~P↔F
이 논증은 참이 맞는 것 같습니다. 이때 위 논증의 의미는 P&~P라는 명제가 거짓이라는 의미입니다. 위 명제의 대우는
~(P&~P)↔T
당연히 위 명제도 참입니다. 이때 위 명제의 의미는 ~(P&~P)라는 명제가 참이라는 뜻입니다. 위 논증은 무모순율과 다를게 없습니다. 무모순율이 성립하면 당연히 성립하는 논증입니다.
다만 위 논증은 '어떠한 공리계에서 P가 참이라고 가정했을 때 공리계가 무모순이라면 P는 참이다'라는 의미는 가지지 않습니다. 위 논증은
~(P&~P)→P
라는 다른 논증이니까요
제논증은 모순<->(p and not p)<->거짓 인데요
~(P&~P)↔T 이게 비모순(무모순)이면 참이고, 참이면 비모순이다 아닌가요
~(P&~P)라는 명제가 참이라는 의미입니다.
T와 동치라면서요
P↔T가 참이라는 것은 두 명제의 진리값이 같다는 의미이고 이때 T는 항상 참이니 P도 항상 참이여야합니다. P가 참이면 위 명제는 참이고요. 따라서 위 명제의 의미는 'P는 참이다'입니다.
~(P&~P)↔T 이게 비모순(무모순)이면 참이고, 참이면 비모순이다 아닌가요
맞습니다
역시 옳은 말은 쿠쿠리
세상의 진리를 모조리 파악하셨네ㄷㄷ
님 틀린 것 같아요
이런글 너무 많이 올리지 마세요... 그러다 정신병 도지심
물어볼 거면 제대로 물어봐라
모순<->(p and not p)<->거짓
냐고 물어보셈
애초에 모순 ↔ 거짓이 안 된다고
모순<->(p and not p)<->거짓 라는 식이 맞냐고 물어보셈
아니 님이 뭔짓을 해도 모순<->(p and not p)<->거짓 라는 식은 참이라니까요
그렇게 물어본 게 저거라고 아오
아니 님이 뭔짓을 해도 모순<->(p and not p)<->거짓 라는 식은 참이라니까요
ㅂㅅ 그렇게 사세요 니가 그렇게 좋아하는 gpt한테 조금만 물어봐도 아닌 걸 알텐데 ㅋㅋ
그럼 나는 안물어봤음?
저 서울대 의대생인데 님말이 타당한 지적이라고 생각해요 !
니 말을 gpt가 제대로 이해한 게 아니라고