논리학 이야기
게시글 주소: https://o.orbi.kr/00069271896
명제 "P이면 Q이다" 에서 전건 P가 그 자체로 거짓이라면 전체 명제는 항상 참이 됩니다. 수학적으로 생각해보면 모든 집합은 공집합을 부분집합으로 가지기 때문이라고 할 수 있고, 더 쉽게 생각해보면 다음과 같이 직관적으로 설명할 수 있습니다. (수학을 이용한 공집합 논리 역시 논증을 하려면 아래의 공허한 참 논리가 필요합니다.)
선생님께서 "다음 시간까지 숙제를 해 오지 않으면 혼을 내겠다." 라고 하셨는데, 그 말을 들은 철수는 다음 시간까지 숙제를 해 갔으나 숙제를 했음에도 혼이 났다. 철수는 본인이 숙제를 했는데 왜 혼을 내느냐고 항의했으나, 선생님은 이에 다음과 같이 답했다. "숙제를 하지 않으면 혼을 내겠다고 했지, 숙제를 하면 혼을 내지 않겠다고 하지 않았다. 따라서 나는 거짓말을 하지 않았다."
이 예시와 같은 자연어적 표현에서는 인과관계가 들어있지만, 인과관계를 배제하고 단순 진리함수적 관계만을 살펴본다면 선생님은 숙제를 해 오는 경우에 대해서는 아무 말을 한 적이 없기 때문에 숙제를 해 오는 경우 혼을 내든 내지 않든 거짓말을 했다고 볼 수가 없는 것입니다. 즉, 거짓을 가능성 자체가 사라진 상황에서 반드시 참 또는 거짓 둘 중 하나여야 하므로 참으로 간주할 수 있다는 것이죠.
노
이를 공허한 참(공허한 진리)라고 부르는데, P가 항상 거짓이므로 P가 참인 경우가 존재하지 않기에 P가 참인 모든 경우에 Q가 참이 된다고 할 수 있는 허무한 경우입니다.
중요한건 이 공허한 참 이야기가 아니라, 문장 연결사의 진리함수적 사용에 대한 이야기입니다. 진리함수적 사용이란, 단순히 말하면 자연어적 문장 논리가 논리적으로 잘 정의된다는 것입니다.
예를 들어, "그들은 결혼을 했다. 그리고 아이를 낳았다." 를 문장 문자를 이용하여 표현하면 P : "그들은 결혼을 했다.", Q : "그들은 아이를 낳았다." 에 대하여 P and Q (P & Q)가 될 것입니다. 하지만 순서가 반대가 된 "그들은 아이를 낳았다. 그리고 결혼을 했다." 는 의미가 완전히 다르죠 (속도위반). 이렇듯 "그리고" 라는 자연어는 &로 해석이 되며 자연어적 서술이 가지는 뉘앙스를 문장 연결사에 모두 담을 수가 없기 때문에 이러한 문제가 생깁니다. 이 경우 P & Q와 Q & P는 자명하게 동치임에도 불구하고 둘 중 하나만 참이게 되어, 오직 P와 Q의 진리값에 의해서만 전체 명제의 진리값이 결정되지 않는 상황이 발생하여 문장 연결사가 진리함수적으로 사용되지 않은 경우가 됩니다.
또 다른 재밌는 예시는 역설의 일종으로, 마찬가지로 문장 연결사가 진리함수적으로 사용되지 않은 예시입니다.
"만약 이 나무 막대가 금속으로 만들어져 있다면, 열을 가했을 때 수축할 것이다."
이 문장 자체는 직관적으로 생각했을 때 거짓입니다. 금속이었으면 (그리고 굳이 금속이 아니더라도) 당연히 열팽창을 하겠죠. 하지만 이 "나무 막대"는 금속이 아니기 때문에 전건이 거짓이 되어 공허한 참에 의해 전체 명제는 참이 됩니다. 따라서 이 경우 이 문장 전체를 하나의 문장 문자로 생각해야 합니다.
더 직접적인 예시로 다음과 같은 예시도 있을 것입니다.
"만약 내가 로또에 당첨되었더라면, 나는 로또에 당첨되지 않았을 것이다."
직관적으로 생각해보면 당연히 말이 안 되는 거짓인 문장입니다. 하지만 저는 로또에 당첨되지 않았기에 전건이 거짓이 되어 문장이 참이 되어버리죠. 이 경우 전체 문장은 참일까요? 거짓일까요?
* 비전공자가 논리학 수업을 듣고 간단하게 작성한 내용이라 틀린 내용이 있을 수 있습니다. 재미로만 읽어주시길
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
흑역사 치우고 착실히 공부할거에요
-
숙대 자전에 정시로 최초합 했는데요... 고 3때 내신공부+학교 수업+학습방향못잡음...
-
찾아봐도안나오네
-
ㅠㅠ
-
아~~~.그때가.참.그립구나.~~
-
고1로 돌아갈 수 있음 감 너무 후회되는 일들이 많다..
-
전전 13번 제발ㅠㅠㅠㅠ......
-
사실 저도 연막 2
이고 서울대 경제학부에 지원하여 핵펑크 1칸합격의 주인공일 가능세계는 없는걸까
-
에혀..
-
피터팬 말고 그 군대에 있는 ㅈㄴ큰거요 저는 고등학교때 기숙사에서 봤어요 아침에...
-
이때아님 언제싸냐 에휴뇨이
-
있으신가요?
-
생활패턴 망가짐
-
오야스미 2
네루!
-
으흐흐 4
으흐흐흐흐
-
코너스톤 6
마약n제 자유사고 n제 오버컴 더 크리티컬 포인트
-
나랑하하호호하는사람들이 현실에서는눈도못맞추는명문대생이라는게 이상함
-
점심시간에 군중 중의 고독 즐기며 혼자 밥먹기 여자애들한테 경멸이랑 개인 카톡으로...
-
홈베이스에 있는 큰 쇼파 같은 곳에 그냥 누워서 자고 있다보면 중간중간 지친 애들이...
-
사탐만 or 과탐만 선택할 수 있다고 부장쌤이 말씀하셨는데 알고 보니...
-
고등학교가 좀 그립다 16
저녁먹고 야자 전에 친구들이랑 피크닉 빨면서 노가리까기 야자때 몰래 나와서 탁구치기...
-
체스하실분 14
초보자만 ㄱㄱ
-
유독 수능날이랑 설대 정시 발표날에 맘이 싱숭생숭함 2
나만 그런가
-
외치죠 다시 한번 나!를! 사랑해줘 내 맘속 작은 바램이 비가되어내려오며언 사랑비가내려어아ㅏ아아ㅏㄱ
-
얼마 전까지만 해도 오르비에 새벽감성 짝사랑 주접글 쓰고 있었는데 오늘은 왠지...
-
연막 ㅈㄴ치면 좋은 점 10
상대방이 내가 어디 학교 어디 과인지 모름 단점: 나도 내가 뭐로 연막쳤는지 까먹음
-
고딩 때로 돌아가고 싶다 공부 안한다는 전제 하에 다시 가고 싶음
-
망했다 편지 써야 하는데 축하금은 덕코로 받아요!
-
모솔 29년차… 15
이제 바람을 다룰 수 있게 되었다
-
재밌다
-
이제 재수를 하는데, 현역 수능 23244(언미화생)였어욥. 수학 때문에 국어도...
-
약뱃 vs 고뱃 1
약뱃 곧 받을거같은데 뭐달까
-
나 개썰리려나
-
난너를사랑해 7
내 세상은 너뿌니야 캬캬캬캬캬캬캬ㅑㅋ
-
다 씻었다 6
어서 자야지 다들 잘자요 좋은 꿈
-
얼버잠 2
잘자요
-
하
-
끝내주게자러가기 1
자러가기 잘자러가기 매우긍정적으로자러가기
-
왜벌써한시야 2
아악
-
과자를 먹어야 하는가 15
고래밥먹자
-
코코낸내 3
-
여성은 하등하다 5
-
https://sbz.kr/zdk1D
-
인강으로 단어를 와랄라해서 탐구개념처럼 암기할 수 있게 강의한다는거같은데...
-
학교 열심히 다니다가 대뜸 수능 보는 경우도 있나요? 0
계획적으로 2학기 목요일은 공강으로 만들어두는 건가 수능 같은 거 다시는 보기...
-
설대 갑니다 4
내년에요
-
관악이 나를 기다린다..!
그런 명제를 사소하게 타당하다고 하죠 ㅎㅎ