다항함수의 미분계수의 역수의 합 (feat. 240728)
게시글 주소: https://o.orbi.kr/00069099108
안녕하세요. 오르비에 글을 처음 써 봅니다.
어제 OnlineMathContest에서 열린 OMCB020에 참가했습니다. G번 문제 해설을 봤는데 처음 보는 공식이 나와서 공유하고자 이 글을 씁니다.
G번 문제는 다음과 같습니다.
구글 번역기로 번역해보면 다음과 같습니다.
실수 계수 3차 다항식 f(x)에 대하여 방정식 f(x)=0은 서로 다른 3개의 실수 해 p, q, r을 가지며 x=p, q에서 f(x)의 미분계수는 각각 9, -7이었습니다. 이때 x=r에서 f(x)의 미분계수를 구하십시오. 그러나 원하는 값은 서로소인 양의 정수입니다. a, b를 사용하여 a/b로 표현할 수 있으므로 a+b를 해답하십시오.
수능 문제 형태로 다시 써보면 다음과 같습니다.
삼차함수 f(x)에 대하여 방정식 f(x)=0은 서로 다른 3개의 실근 p, q, r을 가지며 f'(p)=9, f'(q)=-7이다. f'(r)=a/b일 때, a+b의 값을 구하시오. (단, a와 b는 서로소인 자연수이다.)
해설을 보면 별해가 있는데 다음과 같습니다.
0이 아닌 실수 c를 사용하여 로 나타낼 수 있다. 이때 x=p,q,r의 미분계수는
이다. 일반적으로 서로 다른 복소수 a,b,c에 대한 항등식
이 성립한다(통분함으로써 용이하게 확인할 수 있다). 따라서
그리고, 여기에서 이다. 일반적으로 중근이 없는 2차 이상의 다항식 근에서 미분계수의 역수의 합은 0이다.
검색해 봤더니 나무위키에 역수의 합에 관한 내용이 있었습니다. 공식은 다음과 같습니다.
n≥2이고 xi<xi+1(i=1,2,3,...,n-1)인 n차 다항함수에 대하여 다음이 성립한다.
증명은 여기를 눌러서 보세요.
예제를 직접 만들어 봤습니다.
예제1) 5차함수 f(x)와 서로 다른 실수 a,b,c,d,e에 대하여 f(a)=f(b)=f(c)=f(d)=f(e)=0이고, f'(a)=f'(e)=-6, f'(b)=f'(d)=24이다. f'(c)의 값을 구하시오.
풀이
예제2) 삼차함수 f(x)와 일차함수 g(x)=2x-1이 서로 다른 세 점 (a,f(a)), (b,f(b), (c,f(c))에서 만나고, f'(a)=5, f'(b)=0일 때, f'(c)의 값을 구하시오.
풀이
함수 h(x)를 h(x)=f(x)-g(x)라 합시다. h'(x)=f'(x)-g'(x)=f'(x)-2입니다. 방정식 h(x)=0은 서로 다른 세 근 a,b,c를 가지므로
입니다. 계산하면
입니다.
기출문제에 적용해서 풀어봅시다.
2024학년도 고3 7월 미적분 28번
(가) 조건에 의하여 g(0)=0=f(0), (나) 조건에 의하여 g(k)=k=f(k), g'(k)=1/3, f'(k)=3입니다. f(x)의 역함수가 존재하므로 f(x)는 증가함수입니다. f(x)의 그래프를 다음과 같이 그릴 수 있습니다.
p(x)=f(x)-x라 하면, p'(x)=f'(x)-1이고, p'(k)=f'(k)-1=2입니다. f'(x)≥0이므로 p'(x)≥-1입니다. 방정식 p(x)=0은 서로 다른 세 실근 0,b,k를 가지므로
입니다. p'(0)에 대하여 풀어주면
입니다. p'(b)=-1일 때, p'(0)은 최댓값 2를 갖습니다. 따라서 f'(b)=0일 때, f'(0)은 최댓값 3을 갖습니다.
f'(0)의 값이 최대일 때, f'(0)=f'(α)=3이므로 f(x)는 점 (α/2, f(α/2))에 대하여 점대칭입니다. b=α/2이므로 f'(α/2)=0입니다. 그래프를 다시 그려보면 다음과 같습니다.
f'(x)=3x(x-α)+3이고, 이므로 α=2입니다.
α=2를 대입하면 f'(x)=3(x-1)2이고, f(x)=(x-1)3+1입니다. f(3)=9, g(9)=3이므로
따라서
입니다.
2024/09/08 예제1에서 f(d)->f'(d)로 오타 수정했습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜 어캄
-
이기상 세지 0
아시아, 아프리카 축산물 통계 양 돼지 소 아닌가요? 동아시아,중국이 돼지 양 소..
-
모자 가능? 0
감독관한테 물어봐서 모자 쓰신분 있나요?
-
빼꼼 4
-
남북기본합의서 태우 남북유엔 동시 가입 태우 74남북공동성명 대중 1차 남북...
-
올해 실모 한 5개정도밖에 안풀긴 했는데 순서를 전부다 언매->독서->문학으로 했고...
-
얼버기 1
내일이 수능...
-
책읽어요 2
재밌을거같아요
-
굿모닝
-
그냥 제가 준비할것들 목록인데 혹시 참고하실분들은 참고하시고 더 필요한거 았을까요?? 수능 화이팅
-
실전처럼 보려면 탐구 끝날때까지 오르비 들어오면 안되겠죠? 근데 왠지 유혹을 못참을거같은..
-
에요??
-
사람들 엘레베이터도 기다려주고 ㅇㅇ 오늘 모닝똥도 ㅈㄴ성공했는데 기운이좋다 다들 행운을 빌어요
-
글은 없는데 조회수가 ㄷㄷ
-
이런 씨1발거 6
-
그래프 개형 추론 이상하게 해서 20분 넘게 날림 수학과 가는게 맞나 싶네요 저런...
-
안될거 뭐있노 0
예아
-
근데 하고 싶음 걍 하던대로 할래
-
가즈아~~~~~~~
-
모닝일러투척 18
역시 쇼군님은 귀엽군
-
이기주의가 팽배했다는 생각 말고는 안 듦 학교 측에서 공학 전환을 갑작스럽게 발표한...
-
얼버기록 3일차 3
다들 옯모닝 11/13 수
-
궁금
-
여러분 모두 수능 잘 보시길 바랍니다(치타가 전해달래요)
-
좋은 아침~ 2
입니다
-
반드시 가야지!!
-
아 나 고3도 아닌데 왤케 떨리지ㅜ
-
항상 듣기 다 맞고 181920 주제에서 2개정도 맞고 도표/무관문/434445/...
-
영어 찍특 추천 0
어디서보나요 ㅜㅜ
-
전 9시까지
-
지금 학교오니까 2
조용하고 너무 좋네요
-
재수생이라 교육청가서 발급받아야하는데
-
ㄴ... 내일이 수능이라뇨...
-
고 1 내신베이스로 어떻게든 되겠죠? 9평 1등급 11덮 5등급..
-
얼버기 4
-
오히려 평소와 같이 보내면 긴장도 덜돼서 꿀잠자고 수능보러 간듯
-
목표 : 오르비에 들어오지 않겠습니다
-
" 하루 남은 이시점. 제발 이것들만은!!! 파이널 벼락치기로 역전합시다!!!! "...
-
아 ㅠ
-
오늘중으로 한번 터지려나
-
그것이 수능이니까
-
니게tv 21일차는 저녁에... {정리좀하고(18시쯤)}
-
??
-
책상 흔들릴 때 책상 다리에 이면지 같은거 두는거 감독관 허락 받아야되나요?
-
행복하자 2
행복하자.우리
-
10월부터 달렸다면 기적 만들어낼수 있음 수능 대박내고 서울대 ㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㅣ
-
수1에서 - 육십분법이 아닌 호도법을 쓰는 이유는 무엇일까? 각 방법의 장단점은...
-
이를 증명해주실 수 있으신가요?
-
이창무랑 차영진 커리를 섞으라는 분의 댓글을 보고 어떻게 섞는건지 궁금해서...
오.....
저걸 처음 생각해낸 사람은 도대체 뭘까
재밌는 성질 감사합니다