3점짜리인데.. (자작문제)
게시글 주소: https://o.orbi.kr/00067817227
미분 금지. 두 함수의 관계를 잘 생각하면 풀립니다. 이정도면 3점이죠?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
게시글 주소: https://o.orbi.kr/00067817227
미분 금지. 두 함수의 관계를 잘 생각하면 풀립니다. 이정도면 3점이죠?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
129?
![](https://s3.orbi.kr/data/emoticons/dangi/035.png)
와우 빠르십니다그냥 판별식이랑 연립방정식 쓰면 풀릴 거 가틈…그치만 계산은 귀차늠
![](https://s3.orbi.kr/data/emoticons/oribi/036.png)
3점짜리라 그런 잡계산 넣지 않았습니다ㅋㅋㅋ맞네 그냥 슥 푸니까 풀리네…허수 판독기로도 좋을 듯? 8,9번 즈음에 들어가서 애들 조지기ㅋㅋㅋ
그래서 미분 금지라 써놨죠 ㅋㅋㅋ 뭔가 허수들은 접선 찾을 것 같단 말입니다
일단 미지수 세개 박고 미분해서 일일이 접선 찾다가 터질 거 가틈
평가원 문제처럼 발상 하나만 하면 풀리는 문제가 참 재밌죠 변별력도 있고
f(x) : x = 2에서 좌우 대칭
f(x) = (x - 5/2)² + x - 6
4 × f(8) = 129
이렇게 푸는 것도 좋지만 3점짜리니 풀이를 좀 더 줄여야합니다. 다른 방식으로도 생각해보십쇼
두 함수의 x절편과 함수 f(x)는 어떤 관계를 가질까요?
아...대칭축이 x = 2 군요
![](https://s3.orbi.kr/data/emoticons/dangi/035.png)
넵 그게 포인트입니다두 직선 y = x-6, y = -x-2 의 교점이 (2,-4)
평행이동을 생각하면 y = x^2에 접하는 기울기 +-1인 접선은
y = x-1/4, y = -x-1/4 (교점은 (0, -1/4)) y = x^2의 꼭짓점은 (0,0)
y좌표 차는 1/4
따라서 f(x)의 꼭짓점의 y좌표는 -4 + 1/4 = -15/4
f(x) = (x-2)^2 - 15/4
4f(x) = (2x-4)^2 - 15
4f(8) = 12^2 - 15 = 129
![](https://s3.orbi.kr/data/emoticons/rabong/022.png)
좋네요