학생들 95%가 잘못 아는 수학 개념
게시글 주소: https://o.orbi.kr/00067633525
바로 ‘치환적분법‘입니다.
제가 매년 학생들을 가르치면서 느끼는 건
이 개념에 대해서 제대로 이해하고 있는 학생이 거의 없다는 겁니다.
치환적분법은 얼마든지 고난도 문제로 출제될 수 있고, 출제된 적도 많은데도 말이죠.
자기가 이번 수능에서 수학 1등급 꼭 받아야한다는 학생들은 아래 영상을 꼭 참고해보세요.
제가 서울대반, 의대반 강의할 때도 학생들이 듣고 깨닫는 게 많다고 했던 내용을 담았습니다.
<치환 적분법 핵심 오개념>
1등급들은 다 되는 메타인지 나도 기르기
1달 만에 6000명 돌파한 저의 유튜브 구독자 이벤트 중입니다!
서울대, 의대생들이 썼던 ‘공진단 체크리스트’를 무료로 나눠드리고 있습니다!
내가 공부를 잘 하고 있는지, 못하고 있는지를 자동적으로 확인하실 수 있습니다! : )
더 구체적인 내용은 아래 영상 참고해주세요 :)
0 XDK (+10)
-
10
-
작수처럼 표점차이 ㅈㄴ심하게나면 씹변수인데
-
메디컬 ,공대 지망도아니고 수학과 쓸거니 ㅅㅂ결정장애
-
아니 막 목표 등급 받을 거 같고 막 그럼,,
-
쉽든 어렵든 점수가 항상 똑같기때문 ㅋㅋ 6평 85 9평 86 시발 ㅋㅋㅋㅋㅋ
-
백분위 98 이상(높1) - 불이 확실히 이득. 백분위 97-93 (낮1~중간2)...
-
30분 잡으라 돼있던데 27분걸려서 2틀이면 수능 90점은 가능할까요...? 영어입니다 과목은
-
한국사보고 바로 퇴실 가능한가요? 이렇게 수능 신청한적은 첨이라..
-
담임쌤이 어짜피 학교에서 설명듣고 이것저것 해야해서 오전엔 제대로 공부 안될거라고...
-
1컷이 91인데 2컷이 89???? 이거 수능 컷 가정이 아닌가 보네
-
맞팔 9 2
금테 달고 싶어요..
-
사문을 복습하며 계속 공부하다가 문뜩 옛날 생명문제 난이도를 다시 느껴볼라고...
-
문학 개틀리네 밥먹고 홈플에서 수능날 먹을것도 좀 사고 해야겠다
-
꼭 상대적으로 쳐지는 과목이 있기마련임.. ㅇㅇ
-
정작 그런 정치계에서 작년에 사교육 이권카르텔 거렸던거 생각하면 좀 짜치네
-
군수생 달린다 12
항상 하던대로 오늘도 달린다
-
정작 2-3등급 애들이 불수능을 바람.
-
750프론가 찍었던데 이거 코인인가요? 십 ㅋㅋ
-
경제 지문 어렵게 낼거면 적어도 문제는 쉽게라도 나와줬으면 ㄹㅇ 4
솔직히 브레턴우즈처럼 배경지식 없으면 리트라도 푸는 것처럼 머리가 엄청 아픈데...
-
ㅠㅠㅠㅠㅠㅠ 추억에 눈물 흘리는 할매 할배들 모여라
-
. 0
-
음음 11
매스머라이저 급은 아니군 기대가 너무 컷었나.
-
더도말고 덜도말고 경제제재 좀 쳐내고 딱 올해 6평정도로만 냈음 좋겠는데.. 저만 그런가요 ㅠㅠ
-
3점 와다다다 풀고 들어가면 벌써지침
-
못할 거 같은데 마지막 날에 휘낭시에 구워서 굿바이선물 해야지…
-
순서대로 7,8,9,10,11인데 11만 응시자수 반토막 남 마지막이라서 개털리고...
-
ㅇㅇ,,
-
다들 어렵나요 기출 다돌리고 들어갔는데 기출이랑은 좀 다른느낌같은데 해설보고나니 또...
-
코멘트대로 1이상이랑 그 밑이랑 갈릴 듯 계산하다가 끝남 70점대 겨우 사수...
-
질문받습니다. 17
네
-
대통령 같지도 않은거 탄핵 직전이라 과연 말을 들을까 의문
-
진짜 궁금해서 물어봅니다..
-
영어 ㅋㅋㅋ 20학년도부터 25학년도 9평까지 현장 응시로 1등급 내려가본 적 한...
-
얘네는 자연계열로 배치에요 아니면 인문계열 배치에요?!
-
멘탈나가네 4
울고싶다 수능은 정신병 장수생들 정신병안걸리는것도 대단한 일이예요
-
대부분을 차지하고 있던 4 종목 좀 운이 좋은것도 있긴 한데 많이 오른것만 골라서...
-
ㅇㄷ
-
내가 좀 생각해봤는데 12
인생 너무 짧음 딱 지금 이 정신연령일때 만 7세쯤 되면 좋을것 같음
-
질투는 나의 힘 15
어떤 분야에서 나보다 잘하는 사람을 보면 어느새 혼자 속으로 경쟁하고 있음 장단점이 명확한 성격인듯
-
언매 만표 145 이상 확통 만표 140 이상 영어 1등급 5퍼이상 경제사문 둘다 만표 70이상
-
이게 절평 취지에 맞지 ㅇ
-
후기를 찾아보는데 다 예쁘다는 말밖에 없네요 기초다지기에 괜찮나요???
-
피곤하군 3
오루비할힘도없어
-
사람이 너무 많아선진 모르겠는데 머리가 굉장히 아픔...
-
저 한녀인데 6
화학함
-
강사 고를 때 7
개인적으로 학사 학위를 봄 대학원 세탁은 항상 문제가 많음
-
적폐 모르페코 보고가 22
ㄷ
-
88 92 정도 나오는데 실력이 는건지 아니면 많이 쉬운건지 모르겠음... 체감사...
-
나는 간다 내일 3
홍천을
-
저도 걍 인강 안듣고 순수 영어력으로 뚫어보려다가 수능 4뜨고 션티 강의 듣는데...
확통이는 스윽...지나갑니다
본질적인 이유는 이번 기회에 제대로 알았습니다만 선생님 근데 합성함수의 미분 꼴에서 g(x)를 T같은 걸로 치환했기 때문에 합성함수 미분 꼴에서 나올 g'(x)가 T'가 되서 1이 되니 사라진다는 건 알겠는데 그렇다면 그냥 g'(x)dx=dt라고 생각해도 큰 지장은 없는 것 아닌가요? 제가 수학 34등급이라 이해를 못한걸수도 있습니다 이해 부탁드립니다
"g'(x)dx=dt라고 생각"이라고 하셨습니다만
이게 오류이기 때문에 '생각'을 안 해야 받아드릴 수 있는 거랄까요?^^;;
적분에 ∫h(x)dx에서 h(x)와 dx가 곱셈이 되어 있는 것이 아닌데
여기에서 갑자기 곱셈처럼 사용하니까
치환적분 처음 배울 때 학생들이 많이 혼란스러워하는 부분이기도 하고
고등학교 수학 범주 내에서 계산상으로도 비효율적이어서
혼란 해소 & 계산 효율 향상을 위해 알려드린 것입니다.
또한 제 경험상
많은 학생들이 이에 대해 고민하고 헤매다가 생각을 접고 그냥 받아드리는데
그 고민하고 헤매는 시간을 없애고
공부에 집중할 수 있도록 해드리는 것이 이 영상의 목적이기도 합니다 ㅎㅎ
(학생에 따라 이걸 상당히 오래 고민 경우도 있어서요)
또한 미분 적분에서 이런 기호 사용에 대해
헷갈릴 수 있는 부분이 정리되어 있어야
dy/dx를 본격적으로 다루는 고난도 문제 풀이도 받아드리기 좋다고 생각해요.
일변수함수에서는 마치 분수처럼 연산이 가능합니다. 우연의 일치이긴하지만 치환적분의 원리만 이해했다면 계산의 편의가 있는 문항의 경우 사용해도 무방하다고 봅니다
지나가던 학생입니다 입시생도아니라 딱히 할말은없는데 dt/dx가 분수는 아닌것은 맞으나 xyz그이상의 다변수함수가 아닌이상 분수처럼 사용해도 큰문제는 없는걸로 아는데 심지어 미분방정식 첫 시작할때 저런식으로 dy/dx쪼개서 넘겨서 쓰기도하구요
애초에 저게 분수가 아닌이유도 원래 분수처럼 라이프니츠가 쓸려다가 dt같은 무한소는 존재하지않는다는게 현대에 와서 밝혀졌고 그래서 분수가 아닌걸로 결론내려진걸로알고있고
xyz이상쓰는 다변수의함수에서는 저런 dy/dx가 벡터개념으로가기때문에 분수로 사용은 불가능한걸로알고
고등학교내에서는 심지어 대학과정에서도 다변수함수가아닌이상
(이부분은 제가 몇년전에 들어서 기억이 안나네요..) 이렇게 dy dx 를 쪼개든 분수처럼 쓰든 크게 써도 상관없는이유가 연쇄법칙쪽과 관련있어서 괜찮다고 알고있는데 굳이 분수아니다 라고 굳이할필요는 없지않을까요?
고등학교에서 라운드기호쓰는 편미분을 할리도만무하구요
맞습니다. 응앵웅웅님처럼 수학 실력이 좋으셔서
분수가 아닌 것도 알고 있고
미분 상황에서 분수처럼 써도 되는 이유까지 알고 있으면
전혀 혼란스러울 것이 없을 것입니다.
그런데 현장에서 학생들을 가르치다보면
이 부분이 납득을 못해서 혼란스러워하는 학생들이 굉장히 많습니다.
d/dx f(x) (=df(x)/dx) 기호 표현에서
d/dx 와 f(x)가 곱해져 있는 것으로 생각하는 경우도 많고
또한 이번 글에서 다루는 것처럼 치환적분할 때
정확한 원리에 대한 이해 없이
g'(x)dx=dt를 이용해서 문제를 풀다보니
이것 자체보다도
∫h(x)dx와 같은 형태에서
h(x)와 dx가 곱셈이 되어 있는 것이 아닌데
여기에서 갑자기 곱셈처럼 사용하니까
그동안 내가 적분 해왔던 건 뭐지?하며 혼란스러워하는 경우도 많이 봐왔고
혼란을 끝내기 위해
이해를 포기하고 대충 받아드리고 나니
dy/dx를 본격적으로 다루는 고난도 문제 풀이도
못 받아드리는 경우도 많이 봐왔습니다.
잘 아는 사람 입장에서는 쉬우니까 적당히 해도 좋을 것처럼 느껴지지만
(저도 대학생때까지는 그리 생각했는데 본격적으로 학생들을 가르치니 입장이 달라지더라고요)
잘 모르는 사람 입장에서는 미적분에 대한 수학적 사고 자체가 막히는 일이 발생해서
고난도 문제 다루기를 어려워하는 걸 보아 안타까운 마음에 얘기하게 되었습니다. :)
저도 chain rlue 생각해서 ㄱㅊ지 않나 싶었는데 선수를 뺐겼네여..
분수가 아닌건 알지만..고등학교 교육과정 내에선 분수로 생각해도 오류는 없다고 배우긴 했습니다