덕코드림) 행렬 질문
게시글 주소: https://o.orbi.kr/00067588381
선형대수학 배우는 중인데 근본적인 궁금증이 생김
1) 선형방정식을 굳이 행렬과 벡터의 곱으로 나타내는 이유가 있음?
2) 행렬은 단순히 수의 나열이고 그 의미는 붙이기 나름임?
1xm은 행렬인데 벡터라고 하고,
mxm행렬은 m차원의 m개의 기저벡터라고 하고,
그러다가도 m×n도 사실은 차원이 m차원이었는데 차원을 떨어뜨린거고
사실 mx1은 열벡터로 볼 수 있고....
행렬의 연산법칙만 성립하면 의미는 마음대로 붙여도 되는거임?
3) 선형방정식의 해가 존재하는지 확인하려면, 행렬로 나타내고 EF으로 바꿔서 풀어내서 해가 있음을 직접 확인해야 함?
4) [0000... ㅣ 4]이런거는 보자마자 해가 없다고 하면 되는거임? 0=/=4니까?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내일의 운세 0
”적정한 선에서 만족을 하고 조절할 수 있다면 더욱 좋다“
-
경제. 한지는 0
이과 유입 많나요??
-
ㄱㄱ
-
아껴놧던 이감 6-10 푸는데 푸는 도중에 스카 전등 나가서 자리 옮긴다고 흐름 다...
-
접수증에는 10-12시에 오라고 되어있긴 한데…
-
운세 ㅁㅌㅊ? 1
-
앞에서 정반종에다가 브레턴으로 쳐맞아서 더 어렵게 보일듯 순서만 바꿔놨어도…
-
검색 안해볼거임 ㅋ
-
수능날 3은 나오겠죠 이퀄 11점 7등급받음 ㅅㅂ
-
제발요..
-
축적성있르면 변동성은 확정임?
-
재수생인데 연락 계속 몇달동안 친구들이랑 거의안했는데 지금 깊티 보내주네ㅜ 갑자기감동받음..
-
냥
-
제발 다 올해 대학 가주세요 내년에는 제가 가겠습니다
-
국수탐1탐2 순서 (놀랍게도 모두 주변 사람들)
-
딱 기달려라
-
앞자리 좋음? 7
다리 떠는거 안보여서 오히려 좋아 아님묘?
-
어차피 내가 막히면 주위에 사람들도 다 막혀요 거기에 쓸 시간/집중력 맞출수있는...
-
흠....
-
짝수20 0
흠.. ㅁㅌㅊ임?
-
유세형 둘째부인인데 어떻게 후반부에 황후가 된 건가요?
-
탐구1 치고 나서 탐구2 치기 전 2분 동안 omr 보면서 탐구1 마킹한 거...
-
원래 24명 아니었음? 그거 코로나때매 그런거였어요?
-
짝수다짝짝 0
음
-
수학은 뭐하지? 0
올해 작년 기출볼건데 실모 틀린 거 다시볼까?
-
찍기로 승부본다
-
운세 최곤디? 1
-
창가? 중간?
-
6모보다 싀움?
-
아무리 생각해도 내일 불국어가 아닌 시나리오는 안보이네 1
9모가 너무 대놓고 뭔 의도를 갖고 국수 존나 쉽게 내서 아무래도 내일 깽판칠거같음
-
짝수형 배정받으면 큰 차이 있나여
-
아 지각 0
쩔 수 없지 한잔해~
-
제발… 남생각도 좀 해줘..
-
삼선기 개웃기네 2
다시생각해도 뭔가 웃겨 청렴하던 존잘알파메일 선비가 아내버리고 기생학교설립하고 결국...
-
네이버운세 0
운세 나쁘지 않은데?
-
개인적으로 몰랐던 지엽을 모아봤습니다 모두 파이팅!!!!!! 끼야아아아앙ㄱ!!!!
-
홉스는 사회계약을 자연상태에서 계약한게아니야?? 그럼 선지에서 홉스는 자연상태에서...
-
네이버 운세 0
그러니까 국어만 잘보면 된다는거지?
-
지역 드론 조종사 협회랑 요리사 협회는 자발적 결사체인데 왜 평론가협회는 공식조직인가요?…
-
ㅋㅋㅋㅋㅋ 아직도 화작풀고있을거같음
-
운세 평가좀여 1
-
네이버? 니가뭔데.
-
평소 강박있고 집착 심한사람들이 보면 뭣도 아닌거에 초조해지고 멘탈 갈릴 가능성이...
-
아무래도 우리 중에 첩자가 있는거 같음. 2025 표지도 다른 투표안 많았는데...
-
할게없음
-
안올라오나 올해는
-
아 네이버운세 1
국어 망하겠군 아침에 무슨사고가 터지려나
-
얘들아 지금 페미가 어쩌구 동덕이 어쩌구 할 때가 아니야 4
걔넨 수능 망치고 여대갔지만 너넨 잘가야 될거아니야
1) 선형방정식을 굳이 행렬과 벡터의 곱으로 나타내는 이유가 있음?
선형대수에서는 행렬이나 벡터 그 자체를 우리가 고등 수학에서 다루는 '수'로 본다고 생각하면 편할 듯 그냥 행렬과 벡터를 다루는 학문이기에 선형방정식 또한 그렇게 나타냄
2) 행렬은 단순히 수의 나열이고 그 의미는 붙이기 나름임?
행렬의 연산법칙만 성립하면 의미는 마음대로 붙여도 되는거임?
관점의 차이임. 앞에서 선형대수의 행렬과 벡터는 '수'와 같다고 말했는데 그냥 그것처럼 공간을 벡터로 표현하면 차원으로 볼 수 있음. 열벡터라는 이름이나 1×m의 행렬을 벡터로 보는 것은 특별한 성질을 가진 수들에 이름을 붙여준다고 생각하면 될듯(나중에 최적화 분야에서 열벡터의 관점으로 바라보고 사용하는데 거기까지 공부하면 이해 될꺼임)
3) 선형방정식의 해가 존재하는지 확인하려면, 행렬로 나타내고 EF으로 바꿔서 풀어내서 해가 있음을 직접 확인해야 함?
ㅇㅇ
4) [0000... ㅣ 4]이런거는 보자마자 해가 없다고 하면 되는거임? 0=/=4니까?
이 경우에는 맞음