[이동훈t] 기출로 기출 풀기 (241128) 미적분
게시글 주소: https://o.orbi.kr/00067438040
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
기출로 기출 푸는 법에 대한
얘기를 해보려고 합니다.
이 글은
기출 분석을 어떻게 해야 하는가에 대한
구체적인 예시가 될 것입니다.
22 학년도 수능 미적분 30 번
24 학년도 수능 미적분 28 번
이 두 문제로 설명해보겠습니다.
본론 들어가기 전에
수학 기본 체력에 대한
아래의 글도 함 읽어보시고요.
[이동훈t] 수학은 피지컬이지. 딴거 있나.
이제 가보자고 ~
시험장에서
위의 문제를 읽고 나서 바로 ...
푸른 칸 : 함수 f(x)의 정의 (방정식, 그래프)
붉은 칸 : 점의 이동 (대칭/평행/확대축소) + 식의 변형(필충관계)
위의 두 가지가 떠오르지 않았다면
아래 문제에 대한 이론적 복습이
부족한 것입니다.
위의 문제에 대한 자세한 해석은
아래의 글을 참고하시구요.
[이동훈t] 수능 난문 만드는 법 (+221130, 231122) 수학2, 미적분
22 학년도 미적분 30 번과
24 학년도 미적분 28 번은
큰 틀에서 문제의 구조가 같고,
소재로 보면 자매 입니다.
221130(미적분)은
점의 확대축소로
두 함수 f(x), g(x)를 결정하고,
(적분계산: 부분적분법(역함수의 정적분+기하적해석))
241128(미적분)은
점의 평행/대칭이동, 확대축소로
함수 f(x)의 방정식을 결정합니다.
(적분계산: 치환적분법)
2년 전에 확대축소만 출제되었으니,
평행/대칭이동의 관점까지 추가해서 출제한다.
그리고 부분적분법에서 치환적분법으로 바꾼다.
교육과정에서 보면 ...
평행이동 + 대칭이동 + 확대축소 = 점의 이동
부분적분법 + 치환적분법 = 초월함수의 적분법
이고 ...
이건 평가원 출제자들의
전형적인 출제 방식을 보여줍니다.
즉, 출제자들은 본인들이 만든 문제 A를 보면서
A 합 A^C = 전체
에서 A^C 에 해당하는 지점을 찾기 위해 노력 한다는 것입니다.
이렇게 하면
각 문항의 정답률을
원하는 대로 얻을 확률이 높아지지요.
나는 28 번 문제 생김만 보고서
' 아 이건 재작년 30 번에서 나온 문제네. '
라는 생각이 들었는데요...
안정적인 만점을 노리는 분들은
이 정도는 쉽게 보여야 합니다.
.
.
.
교육과정의 체계에서
이 문제를 분석해 볼까요 ?
f(9)/f(8) 의 값을 구하라고 하였으므로
함수 f(x) 의 방정식을 유도해야 합니다.
이때, 상수 k 의 값을 결정해야 하니,
구간 [0, 7] 에서의 정적분 값이 e^4-1 이다.
에서 k 의 값이 유도된다는 생각을 할 수 있어야 합니다.
중/고등 교육과정의 체계상
집합 -> 함수 -> 정적분
이므로, 이 문제의 주어진 조건에서
집합(정의역, 치역),
함수(의 방정식, 그래프, ...)
를 우선 살펴보아야 합니다.
함수(즉, 그래프)는 점들의 집합이므로
곡선 y=f(x) 가 지나는 점을 찍어야 한다.
곡선 y=f(x) 가 반드시 지나는 점을 찍으면
(g(t), t), (h(t), t)
인데. 붉은 칸에서
h(x) = k - 2g(x)
라고 하였으므로
(g(t), t), (k-2g(t), t)
입니다. 이때, 점의 이동의 관점에서
k-2g(t) 는 x 축 위의 g(t) 를
y축에 대하여 대칭이동시킨 후,
y축에 대하여 2배 하고,
x축의 방향으로 k만큼 평행이동시킨 것입니다.
이제 아래의 그림과 같이
함수 f(x)의 그래프를
그릴 수 있습니다.
(아래는 2025 이동훈 기출 미적분 풀이)
위의 풀이에서
정의역 : 실수 전체의 집합 = (-inf, 0) 합 [0, k) 합 [k, inf)
치역 : 음이 아닌 실수 전체의 집합
함수 : 두 구간 (-inf, 0], [k, inf) 에서 일대일 대응(방정식까지 유도됨)
구간 [0, k]에서 f(x)=0 (<-귀류법 이용)
정의역을 2개 이상의 집합으로 쪼개는 것,
각 구간에서 함수 f(x)의 방정식을 결정하고,
성립하는 성질을 생각하는 것,
귀류법을 적용하는 것,
막상 직접 출제 범위는 별 것 없는 쉬운 계산이라는 것,
... 등등이
이건 수능 문제야 !
라고 말하는 것 같습니다.
(이 문제의 경우에는
세 개의 구간으로 쪼개서 ...
두 개의 구간에서는 일대일함수,
나머지 한 구간에서는 상수함수임을 밝혀야 하지요.
이 과정에서 귀류법을 써야 하고요.)
.
.
.
잘 만들어진 수능 문제를 보면 ...
출제자들이 교육과정과
본인들이 만든 기출 문제를
얼마나 잘 이해하고 있는지를
알 수 있습니다.
.
.
.
이번주 중에
2024 수능 수학에 대한 심층분석글을
올려드릴 예정입니다.
또 만나요 ~~!
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아 미친 f(x)=f(1)의 실근에는 당연히 1이 있지 1
다풀었는데 아 ㅋㅋㅋㅋㅋㅋㅋㅋ미친놈이
-
기습 ㅇㅈ 3
사랑해
-
분량 조절 실패로 인한 위에는 빽빽한데 아래는 널널한 구조가 완성됐습니다 ㅋㅅㅋ...
-
자신이 없음.. 3
수능을 못볼 자신이 없음..
-
답도 같이 알려주셔야 답변을 얻을 확률이 높아집니다.. 정답 모르는 상태에서 막상...
-
강x 시즌34 0
강x 시즌3 4에서 얻어갈 거 많은 회차 3개만 ㅊㅊ해주세요
-
컨디션조절실패 0
아 머리앞ㅠ
-
진짜 날씨 웃음벨이네 ㅋㅋㅋ
-
국어 상상 9,10 이감 엣지1,2 화2 owl 시즌3 지2 oz 시즌2
-
자리가 꽉 차 있어서 그냥 커피 사러 20분 걸어온 사람이 됨뇨.....
-
30틀15찍맞 30번 4까지 y=x인건 찾았는데 그 식을 잣같이 써서 틀림 15번은...
-
열심히 할테니까 제발 시켜만 주세요
-
1. 남반구에서 태풍은 동/서 중에서 어디가 강한가요? 2. 기상위성에서 관측되는...
-
응안풀래
-
수능 끝나면 13
뭐할거에요 전 일단 미용실 예약해둠
-
몇급간 더 잘 갔음?
-
“못” 받을 자신이
-
냥
-
까지 102시간 남음
-
무조건 하나는 실수하는데 아.
-
저거 눈에 안 좋지 아늠?
-
그동안 어그로, 뻘글만 쓰다가 수능 직전에야 공부관련 글로 메인을 가보네요 다소...
-
진짜 없음 ㅅㅂ..
-
쉽게 말하면 그냥 개념을 수치화 시키는 거죠????
-
17 -> 50명 됐다는데 컷 얼마나 떨어질까요? 수학 1문제 이상??
-
수능장 아침에 1
롤 매드무비 옛날브금 듣고가는거 어떰
-
지엽하나에 썰릴듯 ㅇ
-
잘 해왔고 0
잘 할거야
-
마지막 풀거 사는건데 파이널이 젤 ㄱㅊ을까요? 평가원 난이도엿으면 해서
-
그러니 제자야! 0
침착하기를. 담래하기를. 그리고 잘 '반응' 하기를. 마지막으로 부디 스스로를...
-
수학 질문 2
요 문제 어떻게 푸는지 좀 알려주실분 있나요 쉬워보이는데 잘 안풀리넹ㅛ
-
2차고사 까지 30일남았는데 수학과외하는게 맞을까요? 저희 학교가 좆반고라서...
-
전과목에서 목표였음 이것만 잘 지켜도 수능날 큰 사고는 안남
-
어디로 배정되나요??
-
이렇게 힘든 공부는 처음임
-
ㅈㄴ 억까아님??
-
기하 88점이면 보정 수능 백분위 99쯤 ㄱㄴ임?
-
지금 국어 1
지금 시기에 국어 뭐하는게 좋나요?? 기출이랑 실모 섞어하면 되나용
-
킹니갓사단 합류 10
-
전ㄴ날에학교갓는데막 리스트에나없고그러면
-
소년법상보호처분 1
만18세까지 되고 만 19세부턴 적용 안되는거 맞나요??
-
긴장해도 이기는 건 쉬워 수능도 그러길 바라며…
-
언매 자립성문제 0
보슬비에서 보슬이 자립성없는 어근인데 그럼 보슬보슬 비가 론다에서 보슬은 보슬에 의존하는 건가요
-
국어 > [이감국어 모의고사 시즌6 9] 모의고사 9차 공통, 화작 > [수능완성]...
-
저희 학교도 거시경제학 전공하신 교수님 한 분 3주 전부터 사라지시긴 했어요! 국어...
-
모든 순간은 언젠간 온다 초등학교땐 이 말을 염불처럼 외면서 수업시간이 끝나길...
-
나 어떡해... 독서 풀 시간이 너무 부족한데...
-
수면바지,슬리퍼,오버핏후드집업 이렇게 입고갈거에요 무조건
-
국가정보원 건물을 드론으로 촬영한 혐의를 받는 중국인 남성이 경찰에 붙잡혔다. 서울...
선생님 쪽지 좀 봐주세요.
답장 보냈습니다. 감사합니다. :)
혹시 교재에서도 이러한 기출 간의 상관관계에 대해 언급해주시나요?
2025 이동훈 기출은 유형별 구성이며, 각 유형에 대한 실전 개념이 포함되어 있습니다.
위의 두 문제의 경우 ... 30번은 역함수의 미분법, 28번은 치환적분법에 해당하므로 같은 유형이 아닙니다. 다만 점에 대한 해석의 관점에서 같고 ... 이에 대해서는 실전 개념에서 설명하고 있습니다. (다만 위의 칼럼 처럼 직접적으로 두 문제를 대조비교하는 것은 아닙니다. 점의 해석을 어떻게 할 것인가에 대해서 실전 개념에서 다루는 것입니다. 이에 대한 문제는 워낙 많기 때문에 ... 위의 설명 처럼 두 문제만 딱 짚어서 대조 비교 하기 힘듭니다. 책이니까요.)
자세한 책 소개 글은 아래를 참고하세요. 감사합니다. ~ :)
[이동훈t] 2025 이동훈 기출 사용법 (+실물사진)
https://orbi.kr/00066537545