-
동기에 따라, 환경에 따라 사람마다 공부에 임하는 자세는 다를 거임 난 공부에 있어...
-
오야스미 0
네루!
-
수학 문항공모 0
대성,시대,현우진t 문항공모 이외에 다른 곳도 문항공모 받는 곳이 있나요?...
-
이래도 되는걸까
-
밥먹으러가는중 0
편의점말규 ㅗ갈곳없네
-
181130 가 1
f(x)가 미분 불가능하니까 g(t) 식을 부분적분해서 구하려는 시도 자체가 틀린건가?
-
흠...
-
https://nz.sa/xAPkS
-
인문/철학 4
경제/법/사회 과학/기술
-
맞음? 언제 나오려나
-
명치가 아파오기 시작했다 저번에 이랬다가 며칠 고생했었는데 아
-
둘 다 만점 받는 난이도나 공부량은 베슷하다는 걸 그래서 생2 간다
-
그냥 모르면 틀리면 되고 알면 맞추면 되는거 아닌가…? 기술같은게 딱히 뭐 필요한...
-
피부 씹같네 4
죽어야지
-
학원도 다니는데 지금 수1,2 마플 수기총하는데 너무 어렵고 문제풀이만 하는...
-
국어 칼럼 4
국어 특히 독서를 잘 이해하고 풀 수 있는 방법을 알려드리겠습니다....
-
국어 이 지문은 존나 쉬웠고 이 지문 존나 어려웠다 있음? 1
참고 좀 하게 알려다오..
-
일단 보통사람이 12시에 취침한다는 가정을 하면 나는 6시쯤 취침함 그러면...
-
어렵다... 5
걍 문제를 풀지를 못하겠다ㅡ. 요청한사람 딱대 아 근데 꼭 풀고말거임
-
굿나잇 2
좋은 밤 보내세요
-
키작은거 체감된 단점은 연예인공연보러갔을때 뿐이었음 2
최애돌 대학축제해서 갔는데 나름 앞쪽이었는데도 사람들 대가리만 보여서 앞자리사람이...
-
늦기전에... 응..
-
크하하 새벽에 같이 놀아요!! 아침되면 다 지울 거지롱
-
오르비 안녕히주무세요 17
담에 봐요 응응
-
??
-
메타 고능하네 2
뭐임뇨
-
레어구매완 0
동대생의 연막작전
-
풀어보든가
-
버거킹 닫은거같은ㄴ데 10
아
-
먼진 몰라도 수1임.미적할수도 잇음
-
배고파졋다 0
밥묵자
-
해설메타라 꺼내보는 과거 태루의 칼럼 (우언 42번에 관한 질문 답변) 13
으아아 답변 쓰다보니까 너무 길어지다보니 글자 수 제한이 걸려서 글로 쓸게요!!...
-
개정을 ㅈㄴ많이 하는거부터가 약간 작년책으로는 작년수능을 대비할수없었읍니다...
-
치킨 시켰다 0
원래 시키던데는 다 문 닫아서 여긴 처음 시켜보는데 흠 어떠려나
-
오늘 새벽에 써봐야겟다
-
우웅
-
지금 메인간 글들이 뭐 보기 싫다거나 꼽다는건 아닌데 그렇다고 메인가려는 목적이...
-
슬슬 졸리네여 8
오늘 같이 논분들 재밌었고 내일도 재밌게 놉시다 전 잘때까지 폰하다 쓰러질게요
-
궁금합니다
-
ㅇㅇ
-
1. 극단적인 경우 생각해보기 문제에 대해 파악하고 싶을 때 극단적인 경우를 먼저...
-
물리력 증가한 상태인데 혈육이 친구 불러서 주방에서 떠들고 있어서 방밖으로 못나가는중
-
ㅇㅇ
-
여기 방음 잘 안되는데 방구를 내가 개만이뀜..
-
릴스넘기다보면 09 헬창 인증 막 이런거 뜨는데 말도 안더ㅣ게 몸이 좋길래 댓글창...
-
내일 달아야겟다..
-
밥도 미루고 인증도 미루고 공스타 공개도 미루고 뭐 그냥 다미룸 말투도 ㄹㅇ 비호감 노잼임
-
대중적으로 가장 유명한 퍼즐 중 하나인 루빅스 큐브는 꽤 복잡한 퍼즐이다. 면의...
그걸 이해하는 게 되게 중요해요 꼭 짚고 넘어가야함
공식 유도는요
S=vt니까요 속력이 일정하다 가정했을 때 (평균 속력이라던가) 속력과 시간을 곱하면 이동거리가 나오죠
감사합니다 제가 물어보는 건 그 공식 유도가 필요할까요? << 였어요
할 수 있으면 해보는 게 좋아요 은근 도움됨
근데 물1에서 공식유도는 보통 그래프나 정의에서 오는 경우가 많아서 어렵진 않아요
인강에서 공식 유도해 주는 편인가요?
제가 빡머갈이라 혼자 하는 데에 무리가
아마 그래프 그리고 다 설명해주지 않을까요?
제가 인강을 들어본 적이 없어서..
조건은 어떻게 찾나요
저 변위 공식이 등가속도에서만
성립된다는 그런 조건(?) 같은 거요
그거도 다 함수 그려보면 되여 등가속도는 vt그래프가 1차함수라 쉽게 계산이 되는거고요
과학은 왜?라는 생각보다 어떻게 쓰는가에 대해 집중 하는게 좋습니다.
물론 그런 기본적인건 알고 넘겨도 되지만 모든걸 다 왜?라고 생각하는 태도는 좋지 않다고 생각합니다. 수학 공식으로 얘기 해보면 굳이 증명하지 않아도 공식만 적재적소에 쓸 수 있다면 문제를 풀 수 있음과 같은 생각입니다.
알고가는 정도면 좋겠지만 이 공식이 왜 성립되었나 << 에 대해서
설명 가능할 정도로 본인이 인지하고 있어야 수험장에서도
본질 그 자체를 직관적으로 이해하고 있기에 변수나 킬러 문제가 나와도 해결할 수 있는 사고력이 생기지 않을까요?
자꾸 하나라도 모르는 거에 대해서 강박이 심해지고 불안해서요
예를 들어 수학2에서 함수의 극한 성질은 대학교 과정에서 증명 되기에 따로 수험생이 증명 방법을 알 수 없습니다. 물론 고등학교 교육과정안에 있는 내용은 수학에서도 따로 증명 해볼 수 있겠죠. 이거와 마찬가지로 물리라는 과목도 기본적으로 알기 편한 내용이 있고, 증명하기 어려운 내용도 있습니다. 그리고 수학을 예시로 들어보면 상위권들이 모두 공식 증명을 할 수 있을까요? 제가 본 상위권들은 적재적소에 잘 활용할 줄 알지. 증명을 할 줄 아는 사람은 소수밖에 못 봤습니다. 그런 불안감은 시간낭비라고 생각 합니다.
애매하네 일단 고마워요 제 새 피드에도 답변 좀
혹시 올수 보시나요?
아니요 내년 수능 봅니다