[칼럼]논술에서도 쓸일 없는 테일러 급수 증명법 (ver.고등학생)
게시글 주소: https://o.orbi.kr/00066474042
첫 글 쓴지 얼마 안되서 두번째 글을 써보네요... 그리고 이륙 지원해주신 분들 모두 감사합니다!
제목대로 테일러 급수는 사실 논술에서도 써먹을 기회 자체를 거의 주지 않습니다... 하지만 난 극한 문제를 풀 때 테일러 급수 매번 쓰면서 너무 찝찝했다! 하시는 분들은 한번쯤 읽어 보시면 좋을 것 같습니다.
테일러 급수란 초월함수를 다항함수의 합으로 나타내는 방법입니다. 예를 들자면
과 같은 식의 방정식입니다. 이를 전개하면
과 같은 모양이죠. 여기서 우리가 주로 쓰는 부분은 이차항 이상의 부분을 싹 다 잘라내고
로 근사한 부분입니다. x가 0에 가까워질수록 1차항보단 2차항 이상의 부분의 오차가 매우매우매우 작아지기 때문에 이렇게 근사할 수 있는 것입니다.
그럼 지금부터 테일러 급수의 증명을 간단하게 적어 볼게요.
급수로 구하고자 하는 함수를 f라 둘게요. 고등학교 과정에서 배우는 모든 초월함수는 무한히 미분 가능하니 f도 무한히 미분 가능하다고 두죠. 그러면 미적분의 기본정리에 의해
가 성립합니다.
위 식을 부분적분하는데 u=f'(t), v'=1로 두고 적분상수 C=-x로 두면 다음과 같은 전개가 가능해집니다.
v'=1이면 v를 적분하면 t+C가 나오죠. 여기서 적분할 인자는 t이기 때문에 적분상수를 x로 둘 수 있게 됩니다.
자. 이번엔 오른쪽의 (t-x)f''(t)를 다시 부분적분해 보겠습니다.
여기서 f 위의 괄호 안의 숫자는 f를 미분한 횟수를 표현하는 방법 중 하나입니다. '(dot)을 많이 찍다 보면 갯수 세기가 불편하잖아요?
한번 더 전개하면
이를 계속 반복하다 보면 이러한 규칙이 생깁니다.
이렇게 다 더하면
라는 식이 나옵니다.
함수 f는 무한히 미분이 가능한 함수라 가정했고 대부분의 초월함수가 실제로 그 조건을 만족하므로 n은 무한히 커질 수 있겠죠?
이때 어지간한 초월함수라면 n!의 증가량이 분자 부분((t-x)^n f^(n)(t))의 증가량보다 아득히 크기 때문에 마지막 적분 기호는 n이 무한대로 발산한다면 0으로 수렴합니다.
(이 부분은 대학 가서 적분의 평균값 정리를 배워야 자세히 설명이 가능한데... 일단은 이렇게 대충 짚고 넘어갑시다)
따라서 f(x)는 다음과 같이 새롭게 정의할 수 있습니다.
이것이 그 탈 많은 테일러 급수의 유도 과정입니다.
그럼 이제 실제로 자주 쓰는 초월함수 몇 개를 넣어서 한번 계산해 보죠.
먼저 f(x)=e^x입니다.
f'(x)=e^x, f''(x)=e^x, ... 이므로 a=0을 대입해 정리하면
가 됩니다.
이번엔 로그함수 f(x) = ln(1+x)입니다.
f'(x) = 1/(1+x), f''(x) = - 1/(1+x)^2, f'''(x) = 2/(1+x)^3, ... 이므로 a=0을 대입해 정리하면
가 됩니다.
다음은 사인함수, 코사인함수를 해 볼까요?
이번에도 a=0을 대입하고 미분해서 계산해 보면
나머지 삼각함수들은 사인, 코사인처럼 직접 유도되는 것이 아니라 다른 방법으로 유도합니다. 그래서 그 과정 설명은 못 해드리고... 가장 자주 쓰이는 탄젠트의 식만 짧게 보여드리겠습니다.
네... 이 친구의 계수는 얼핏 보면 불규칙해 보입니다. 이는 나중에 베르누이 수열이라는 걸 배운 뒤에 알아보시는 걸로...
다른 초월함수들은 고등학교 과정에선 거의 안 배우죠? 그러니 초월함수 탐색은 여기까지 하겠습니다. 수식 넣기 힘들어요
마지막으로 테일러 급수는 대체 어디까지 근사해서 써야 하느냐! 에 관한 내용을 조금이나마 적겠습니다.
대부분의 극한 문제에서는 분모 분자가 같은 차수가 되도록 문제를 만듭니다. 이러한 경우에는 보통 1차항(코사인의 경우는 2차항)까지만 근사하면 답이 나옵니다.
하지만 간혹가다 분자에는 사인 1개 x 1개나 탄젠트 1개 x 1개 줘 놓고는 분모에선 3차항을 준다던가... 하는 경우가 있습니다.
뭐 이런식으로 말이죠. 이때는 분모와 차수가 같아지는 차수까지 근사를 해 주셔야 합니다. 가령 위의 식에서는 사인을 3차까지 근사해서 답은 1/6이 나옵니다.
여기까지 테일러 급수의 증명과 활용시 주의점에 대해 부족하게나마 적어 봤습니다. 이걸 보고 수학에 흥미가 생기신다면 좋겠네요... 긴 글 읽어주셔서 감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
미헌법중,1조는 정부의 입법부 즉 미국 의회를 정의하고 있다. 여기에는 하원과...
-
내일은 비역학 개념책 조진다
-
카톡으로 용돈 보내주셨는데 수능 끝나고 받는게 맞겠죠? 감사인사는 드렸는데
-
(✷‿✷)
-
수능은 자신감이 0
ㅣ진짜 중요한가보네요… 윤도영쌤도 그렇게 말씀하시고 저희 학원쌤도 똑같이 말씀하시던데
-
이제 미적 전범위 개념학습(미친개념 찍먹하고 예제+연습문제 공책에다 풂) 끝나서...
-
풀수있는문제가 꽤 많았네
-
내년 고3이라 가을때부터 천천히 심맨님 커리 따라갓엇는데 이제 곧 끝나서 커리중에...
-
https://orbi.kr/0009658324/ 전 이거
-
없겠져..?
-
독서지문 (1) 비극과 희극 두 부분으로 되어 있는 듯하지만 희극을 다루었을 자료중...
-
왜 난 느낌상 3
올해 수능이 국어 24독서보다 살짝어렵 24문학보다 쉽 수학 23,22어딘가 영어...
-
저 불닭 사먹게 덕코좀요 ㅈㅂㅈㅂ
-
원래 삼각함수 덧셈정리 문제는 수능에 잘 안 나오나? 5
최근 미적기출들에서 삼각함수 덧셈정리문제는 잘 못 본 거 같은데 그냥 범위가 많은데...
-
젠장잠이안와 1
어떻게 고친 수면패턴인데...어제한번 늦게잤다고 다시 와장창
-
888484 3
훈훈훈호훈호
-
-
평가원스러운 지문 들고가려 했는데 그게 어떤건지 잘 모르겠어요 보통 어떤 지문 들고...
-
이건 사람 글씨가 아니야..
-
남자인게 대놓고 티남 ㅋㅋ
-
1. 이혼 시 부부협의 없이 가정법원이 지정한다 2. 부부 협의로 결정한다 두...
-
글씨 잘ㅆ는데 7
플래너 올려주고싶다
-
찜뱃 얻는 법 10
https://orbi.kr/00010821728 여기 나와있네요
-
작수컷이 47인가.. 괴물들이네 진짜 강민웅쌤은 보통 쉬운회차도 45정도라고 말씀하시던데
-
영어2 진짜 너무 간절함 작수71 6모미응시(논술반수) 9모76 요즘들어서는 하루에...
-
영어 국어 정말 약하기도 하고 학원이 잘 맞아 영어 국어는 계속 다니되 수학은 끊고...
-
김승모 3회 1
애끼다가 풀었는데 독서 문학 너무 술술 풀려서 처음으로 시간 남았음. 그런데 너무...
-
25 9모를 풀로 풀어야겠다
-
현정훈T 인강 1
오늘 현강에서 내년에 어디서 수업 할지 정해진 거 아무것도 없다고 메가대성...
-
나 키 179.x인데 14
X는 후반 180이라고 해도 됨?
-
그걸 어케 기억하고 어케 쓰는 거야
-
아님 그냥 실모 치고 채점 후 점수 확인만 하시나요 전 독서 문학에서 아아주 골고루...
-
개인사정으로 재수로 붙은 대학을 못 다녔음 (현 21) 재수로 붙은 대학도 그리...
-
그땐 일주일에 국어 실모 3개 이상 풀면 대평가원 논리에 반역을 든 허수취급 받음 지금은 반대인듯
-
숨마국어 이분 아시는분 연계작품 보는데 은근 그림으로 연상잘됨
-
범부한테는 너무 힘듬
-
안녕하세요! 저는 현재 고려대학교 사범대학에 재학중인 1학년입니다! 현재 다들...
-
수능은 운칠기삼인데 찍기 못참거든요
-
옛날 계정일 때 이미지 써주기 두 번인가 해줬었는데 9
진짜 모르는 분이 써달라고 하면 식은땀 흘리면서 그 분 게시글 다 보고 연구해서...
-
시험지마다 문항별로 난이도는 다 다르겠지만.. 올해 초 5등급에서 시간만...
-
?? 연계라도 봐야겠다 살려주세요
-
강준호 화학 0
내년에 강준호 선생님 현강 들을려고 하는데, 현강 전에 김준t의 개념,기출만 하면...
-
오늘부터 세뇌 시작해야지
-
그런건 없다
-
실모의 껍데기를 쓴 엔제가 맞다 이거져?
-
꼭 하기로 마음먹은거에서 하나는 못하는듯 어제도 문실정 2개 불꽃모2개 생1사1...
-
집에서 푸는 거랑 시험장 가서 푸는 거랑 15점 차이날 정도로 ㅈㄴ쪼는데.. 카페나...
-
오히려 신남
-
알려주세요 어려운 순
테일러씨는 참 똑똑하구나
한무 부분적분으로 테일러급수 느낌있게 증명하기 ㄷㄷ
멋있네요
전 개인적으론 이것보단 미분을 이용한 증명이 더 멋진데... 엡실론 델타를 여기서 설명할 수는 없으니 ㅠ
이것도 올려주신다면 재밌게 읽어보겠습니다 ㅎㅎ,,
이건 차마 설명을 못하겠네요... 너무 풀어쓰기가 힘들어유...
예전에 저걸 통해서 오일러 등식 도출할때 참 수학 재미있다고 생각했었는데...
좋은글 감사합니다