이거 무슨 증명..? 논리..? 인지 아시는 분 계시나요.
게시글 주소: https://o.orbi.kr/00065609417
학교 시험문제 중에
위 식을 2x로 나눈 후, 미분해서 f(x)를 구해야하는 문제가 있었는데요...
저는 x=0일 시에 나누기를 사용할 수 없어서, x=0일 때와 x=/=0일 때로 나누어 계산을 하려했는데 답지를 보니 바로 2x로 나누어 f(x)를 구하더라고요?? 선생님께 x가 0일 수도 있는데 이게 가능한 것인지 물어보았더니, 일반적으로 불가능한 것이 맞으나 x가 모든 실수를 대상으로 할 때 하나 정도의 실수는 무시할 수 있다?? 뭐 이런 이론인지 증명인지가 있다는데...혹시 뭔지 아시나요? 그리고 이게 고등학교 수학과정에서 쓰여도 되는건가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
20때 bis는 다맞았는데 계약 한문제 틀림 열차표 내용일치 문제 이거 아직도 헷갈림
-
생체 리듬 돌려놓기 프로젝트 1일차
-
도덕이란 뭘까 2
요즘 고민임
-
안떴다. 해모 시즌 1~4 중에 하나만 추천좀 그냥 멘탈 힐링용으로 파이널은 풂...
-
쌍사특 0
세계사 : 이게 1컷 50이라고? 동아시아사 : 이게 1컷 50이 아니라고?...
-
사문 강k 15 0
사문 강k 15번 어떤방법으로 푸는건가요 풀려고해도 안풀려서요
-
난 만점이다 0
오늘 비록 6시에 뛰쳐나와서 피방롤을 조지긴했지만 수능은 잘볼것이다 반드시.
-
아예 과거버전도 못보게 막아놨네 어휴
-
레어 사고 싶다 2
현재로서 구매가능한 레어는 괴산군 레어뿐.. 괴산군 잘 몰라요.. 안 땡겨요 ㅠ
-
엄청 나중에 돌아와서 몇명만 딱 팔해놔도 누군지 알고 평소엔 커뮤 잘 안하는데 딱...
-
올해 계속 수학 쉽게 내라고 명령 여러번 떨어졌다고... 9평도 그 일환이고
-
1. 관대한 pdf 예전엔 누가 피뎊 쓰다 걸리면 메인글이 그사람 욕으로 도배되고...
-
미헌법중,1조는 정부의 입법부 즉 미국 의회를 정의하고 있다. 여기에는 하원과...
-
내일은 비역학 개념책 조진다
-
카톡으로 용돈 보내주셨는데 수능 끝나고 받는게 맞겠죠? 감사인사는 드렸는데
-
(✷‿✷)
-
수능은 자신감이 2
ㅣ진짜 중요한가보네요… 윤도영쌤도 그렇게 말씀하시고 저희 학원쌤도 똑같이 말씀하시던데
-
이제 미적 전범위 개념학습(미친개념 찍먹하고 예제+연습문제 공책에다 풂) 끝나서...
-
풀수있는문제가 꽤 많았네
-
내년 고3이라 가을때부터 천천히 심맨님 커리 따라갓엇는데 이제 곧 끝나서 커리중에...
-
https://orbi.kr/0009658324/ 전 이거
-
없겠져..?
-
독서지문 (1) 비극과 희극 두 부분으로 되어 있는 듯하지만 희극을 다루었을 자료중...
-
왜 난 느낌상 3
올해 수능이 국어 24독서보다 살짝어렵 24문학보다 쉽 수학 23,22어딘가 영어...
-
저 불닭 사먹게 덕코좀요 ㅈㅂㅈㅂ
-
원래 삼각함수 덧셈정리 문제는 수능에 잘 안 나오나? 7
최근 미적기출들에서 삼각함수 덧셈정리문제는 잘 못 본 거 같은데 그냥 범위가 많은데...
-
젠장잠이안와 1
어떻게 고친 수면패턴인데...어제한번 늦게잤다고 다시 와장창
-
888484 3
훈훈훈호훈호
-
-
평가원스러운 지문 들고가려 했는데 그게 어떤건지 잘 모르겠어요 보통 어떤 지문 들고...
-
이건 사람 글씨가 아니야..
-
남자인게 대놓고 티남 ㅋㅋ
-
1. 이혼 시 부부협의 없이 가정법원이 지정한다 2. 부부 협의로 결정한다 두...
-
글씨 잘ㅆ는데 7
플래너 올려주고싶다
-
찜뱃 얻는 법 10
https://orbi.kr/00010821728 여기 나와있네요
-
작수컷이 47인가.. 괴물들이네 진짜 강민웅쌤은 보통 쉬운회차도 45정도라고 말씀하시던데
-
영어2 진짜 너무 간절함 작수71 6모미응시(논술반수) 9모76 요즘들어서는 하루에...
-
영어 국어 정말 약하기도 하고 학원이 잘 맞아 영어 국어는 계속 다니되 수학은 끊고...
-
김승모 3회 1
애끼다가 풀었는데 독서 문학 너무 술술 풀려서 처음으로 시간 남았음. 그런데 너무...
-
25 9모를 풀로 풀어야겠다
-
현정훈T 인강 1
오늘 현강에서 내년에 어디서 수업 할지 정해진 거 아무것도 없다고 메가대성...
-
그걸 어케 기억하고 어케 쓰는 거야
-
아님 그냥 실모 치고 채점 후 점수 확인만 하시나요 전 독서 문학에서 아아주 골고루...
-
개인사정으로 재수로 붙은 대학을 못 다녔음 (현 21) 재수로 붙은 대학도 그리...
-
그땐 일주일에 국어 실모 3개 이상 풀면 대평가원 논리에 반역을 든 허수취급 받음 지금은 반대인듯
-
숨마국어 이분 아시는분 연계작품 보는데 은근 그림으로 연상잘됨
-
범부한테는 너무 힘듬
-
안녕하세요! 저는 현재 고려대학교 사범대학에 재학중인 1학년입니다! 현재 다들...
-
수능은 운칠기삼인데 찍기 못참거든요
연속함수라서 되는거 아닐까요
x != 0이라 가정 후 계산
-> x가 0 좌/우극한으로 갈 때도 나눈 식은 성립
-> 어차피 연속이니 x=0일때도 같은 값 도출
그러니까
1. 위 식의 x->0+= x->0-이니 2x로 나누어도 x->0+= x->0-이다.
2. 연속함수이니 좌미분계수 = 우미분계수 = 함숫값이라는건가요...?
그쳐
근데 f(x)가 연속함수라는 조건이 있었죠..?
f(x)가 연속함수라는 조건은 없고, 인테그랄의 우변이 ax^5 + x^4 + ⋯ 이긴 했는데, 저는 인테그랄 내의 f(x)의 연속여부와 정적분의 연속여부는 상관이 없다고 배워서...
우변이 다항식이었으면 그냥 미분해도 되겠네요 자동적으로 연속+미분가능한 함수임이 표현된 것이니까
제가 f(x)의 연속성을 물은건 아마 우리 교육과정 내에서는 'f(x)가 연속이면 그에 부정적분을 씌운 함수는 미분가능하다'는 사실을 쓸 수 있어서 그랫서요
그건모르겟는데 f(x)가 연속이면 나눠도됌
인테그랄 안에 f(x)가 있다면 고등학교 문제에서는 '연속함수 f(x) ~~'라고 주어지긴 할텐데요..
혹시 질문 하나 괜찮을까요? 위에 쓴 식의 우변이 ax^5 + x^4 + ⋯ 라고 하면 반드시 f(x)가 연속함수라고 볼 수 있는건가요? 개념 공부 할 때 인테그랄 내의 f(x)의 연속여부와 정적분의 연속여부는 상관이 없다고 배워서 헷갈리네요.
발문에 f가 연속함수니 다항함수니 이런 말은 아예 없었나요?
위 식의 우변이 ax^5 + x^4 + bx^3 + x^2 + cx일 때 a,b,c와 f(x)를 구하라고 되어있었습니다
https://orbi.kr/00040517614
요 글 한번 참고해보시죠