쌉선비 vs 날라리 테스트
게시글 주소: https://o.orbi.kr/00057754835
안녕하세요.
상승효과 이승효입니다.
성적이 안나오는 학생들에는
두 가지 패턴이 있습니다.
1. 문제를 너무 선비처럼 푸는 학생
2. 문제를 너무 날라리처럼 푸는 학생
당신이 선비라면
문제를 좀 대충 풀어보세요!
선비테스트 한번 가보죠.
선비테스트1) 2023학년도 6평 5번
등비수열이니까 보자마자
이런 식이 떠올랐다구요?
아니 떠오르기도 전에
일단 손부터 움직이나요?
네, 당신은 쌉선비..? ^^
그냥 대충 풀어보세요.
이런건 공비가 대충 정수....
더해서 3/2라구?
문제를 째려보세요.
답이 보입니다.
아,, 공비가 2면 되네??
a2가 1/2이고, a3가 1이면
잘 맞아 떨어지는구나~ 아하하 ^^
선비테스트2) 2022학년도 수능
인티그럴 쓰기 시작했다면
당신은 선비.
날라리들의 생각은?
곡선과 직선이 만나는 점은
x가 0과 6일때입니다.
직선 슥 그려서 반띵해야 하니까?
아, 대충 생각해보면
x=3 이구나~ 아하하 ^^
선비테스트3) 2022학년도 9월
a와 b, 미지수가 두개니까
지금부터 연립들어간드아!!!
네, 선비 한명 추가요.
대충 풀어봅시다.
그래프를 째려보니까
B의 x좌표가 A의 x좌표의 5배네?
그럼 OA의 기울기가 OB의 기울기의 5배?
곱이 5/4 라고???
대충 집어넣어보면
OA기울기가 5/2고, OB의 기울기가 1/2이네??
넓이 이용하면 a가 나온다~ 아하하 ^^
선비테스트4) 2022학년도 6월
등차수열의 합공식? 일반항??
네 선비 맞습니다 맞고요.
대충 봐서
a6 = 2 a3 니까 a0 = 0이네?
원점 지나는 직선같은 등차수열이네??
첫째항이 2 니까
2 4 6 8 10 12... 이렇게 가겠네??
ㅇㅋ,,,
1부터 10까지 대충 더한다음에
곱하기 2 가즈아~ 아하하 ^^
선비테스트5) 2022 예시문항
자,,, 일단 함수 |f(x)| 부터 구하고~
식을 써서....
넵. 아나타와 선비데쓰.
대충 푸세요 대충
연속이니까 연결되어야 하고
a 위아래에 집어넣으면 같을리가 없네??
그럼 a위아래에 집어넣은거 더해서 0이네??
아... 2a-1=0 이네?? 끝!... 아하하 ^^
많은 학생들이
시험장에서 사고가 유연하지 않아요.
그냥 보기만 해도 보이는 문제들도
일단 식부터 쓰려고 하고
외운 공식 적용하려고 하고,
사고를 하려 하지 않습니다.
당신이 선비라면 대충 푸세요.
그래야 성적이 오릅니다.
물론, 대충 푼 답은 그게 맞는지
검증을 하고 넘어가야 합니다!!
다음은 2번 패턴. 날라리.
선비와는 정반대죠.
너무 대충 푸는게 익숙해서
식세우는게 안되는 학생이 있습니다.
당신이 그런 학생이라면
지금부터 선비가 되어 봅시다.
선비의 필수 아이템은 갓!
...
이 아니고 교과서입니다.
자, 이번엔
날라리 테스트 가즈아!
이런 조건을 보면 뭐가 떠오르나요?
네 절댓값 나오면 "접어 올린다"
미분불가능하면 꺾여서 "첨점"
국룰이죠~ 날라리의 대명사!
자 그러면 이제
선비가 되기 위해
교과서를 한번 보겠습니다.
미분가능하지 않다?
아 이런걸 미분가능이라고 하는군요.
그럼 이 문제에서는 함수 f(x) 대신 |f(x)| 이고
a대신 1이니까, 그대로 써보면
이런 뜻이군요.
이정도만 되도 어질어질한가요?
ㄴㄴ 선비는 이걸로 끝나지 않습니다.
존재하지 않는다?
존재가 뭐지????
이번에는 교과서에서 "존재"를 찾아보자.
아하.
두 값이 같지 않을때
"존재하지 않는다"고 하는군요.
이제 선비의 답이 나왔습니다.
이걸 식으로 표현하면
이렇게 되고
다르게 표현하면
이렇게 되겠구나... 아하하 ^^
예전에 킬러 3문제 빼고 다 쉽던
27+3 시절에는 이런거 몰라도 됐어요.
도구 몇개만 잘 정리해서
문제를 대충 풀면 됐습니다.
날라리의 전성기가
2014-2017 이었죠.
그런데 이제는 수능이 그렇지가 않습니다.
정확히 알지 않으면 틀리는 문제가
점점 많아지고 있습니다.
선비가 되기 위한 길은 험난해요.
아마도 이 칼럼을 보고 나면
대충 풀기만 기억에 남을거고
뒷부분 내용은 잘 기억에 안날거에요.
수학 가르치는 사람들이나 이거 보고
오,, 그러네,, 할 가능성이 높죠.
성적을 올리고 싶으세요?
그럼 두가지를 같이 병행해야 합니다.
날라리 + 쌉선비 = 날선비가 되자
어느 한쪽에 치우치면
성적을 올리기 힘들어요.
이번 칼럼은 여기까지 하겠습니다.
유튜브 "이승효의 상승효과"도
구독 부탁드리고요.
궁금한 점은 댓글주세요 :-)
[광고]
오탈자는 마감되었고
이제 4를 위한 이삼이가 시작됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
누가 가르쳤는데! 당연히 잘보지! 누가 배웠는데! 당연히 잘보지!
-
9월 10일?즈음부터 생,지 시작함 공부 거의 5-6년만에 했으니 거의 노베수준이고...
-
필요 없다
-
여자되는것도배워야돼
-
파랑색 조아(색깔론 아닙니다)
-
인원수 늘어나서 자리 좀 좁아진다는데 그냥 옆 사람들은 다 내 발밑에 있다는...
-
김승리 최소제곱 6
이후로 그 누구도 믿지 않기로 했다 김승리도 안믿어 ㅅ3ㅂ 김승리만 3-4년 들었지만 이건 아니었다
-
ㄱㄱ
-
원본 푸는게 낫겠지?? 아님 선별만 풀어볼까 1회독은 했는데 기억이 안남..
-
제발 2등급 유지만 하게 해다오 가원아... 영어 난도 정상화 제발
-
어려웠던편임?
-
아 기구하다
-
시간 진짜 빠르다..
-
이 편지만은 읽자마자 눈물이 났습니다 모두 화이팅합시다
-
보인다 보여
-
공부ㅈㄴ하기싫다 4
머지
-
무적권 imf 관련해서 하나는 나올거란 뇌피셜이 있음 이번에 브레턴우즈 교수...
-
주말로 밀렸네요 비맞으면서 고대논술 보러가면 될듯
-
대체 언제부터 킬러문항을 안 내고 있다고 착각한 거지?
-
내년 커리 0
국어: 브크 한번만 복습하고 그냥 혼자 할 듯 수학: 김현우 영어: 션티 물리:...
-
(경제 상식) 환율이란 무엇일까? (환율과 경상수지) 1
오늘은 수능 국어 경제 제재를 위한 배경지식 이야기를 한 번 해볼까 해요. 우선...
-
구해욤…ㅠ
-
국어 1. 연계 마지막 총점검 (운문은 눈에 익게 하기, 산문은 등장인물이랑...
-
화학은 이렇게라도 안해주면 내년에 화트남어 된단말이야..
-
권용기 개념책 0
이거 왤캐 자세하게 돼 있는 거 같지
-
정법질문 0
위헌심사형 한법소원심판이 인용된경우에 해당 심판과 관련된 법원판결 확정된 후에...
-
언매 개념 (사탐 1개) 기출 n제 (언매 다맞는 애들 보면 평균 300개씩은 푸는...
-
순서대로 올해 9 6평, 더프 국어입니다... 이륙지원 부탁드릴께요...
-
진짜 죽는줄알았네 어쩌다 특임대로 와서 개고생이고
-
날씨 더울거 같던데
-
실모영어특) 1
핵심근거문장을 꼬아서냄.... 평가원은 그냥 주는편 인거같은데 나만그렇게느끼나..
-
산책하면서 입시 얘기 하고 싶어 ㅎㅎ 올해 성대가 바뀌었으니 지각 변동이 일어날거고...
-
이상형 4
이상한테는 동생만 둘이 있었지 형은 없었다네요~
-
그냥 간절하지가 않은거임? 간절하면 오름?
-
무슨 세계관이지다노
-
이상형 16
오르비하는잘생긴남자
-
내가 이상한건가
-
국어 실모 2개 1
손가락 걸기 안하기 연습...
-
오늘 할 것 2
국어 한수14회 (이미풂, 96점) 아수라 8-3,4 연계 고전시가 주요작품...
-
누나가 준 커피 4
이게 제 첫 커피임
-
문제만 푸느라 개념이나 연계쪽에 시간을 못들였더니 수능이 4일남았는데 할게 너무...
-
공부하다 멘탈무너지면 햄스터 보고 회복하는 편인데
-
40일밖에 공부안해서 그런가 1년동안 2시간씩 과탐 공부하면 될 것 같다는 생각이...
-
따끈따끈한 새책 ㅋㅋ 얼마나 미룬거고
-
수학 질문 0
지금 고2라 시발점 듣고 있는데요 쎈이랑 기출생각집 2.3점 풀만하면 뉴런 나오면...
-
에휴
-
흠. . . 내가 만덕줄테니까 나 과외시켜주면
-
개념 복습 vs 실모 vs 기출
-
할 거는 많은데 몸 상태 좋지 않다
그리고 날라리 파트를 보고 작년9평이 떠올라버린..
맞아요. 노려보는건 중요합니다! ㅎㅎ
5번제외 선비처럼 풀고 있으면 잘하고 있는거...아닐까요
저러다 실수나면...클나요..
네~ 맞아요. 꼭 저렇게 풀어야 된다는 뜻이 아니에요. 실수하면 큰일나죠.
그런데 4점짜리 어려운 문제를 풀다 보면, 저렇게 대충 "이거 아닌가" 때려 맞추는게 정말 중요합니다. 그래서 평소에도 눈으로 보면서 문제를 날라리처럼 풀어보는게 필요해요.
5번을 트리핀교수님이 날라리처럼 푸는걸 보면, 누군가는 과하다고 느낄거에요. 근데 님은 대충 푸는게 익숙하니까 더 빨리 풀죠? 그걸 선비처럼 풀라고 하면 "굳이 왜??"라는 생각이 들거에요. 1-4번도 마찬가지입니다~ 익숙해지면 실수도 없고 시간도 빨리지거든요.
날라리로 풀고 자꾸 불안해서 선비처럼 식으로 검증하는 습관은 어떻게 해야 할까요 요즘 날라리처럼 먼저 관찰하는 훈련은 하고 잇는데 불안해서 식을 작성하게 되더라구요..
가장 베스트는 두가지로 확인하는 거지만, 사실 1번같은 너무 명백하기 때문에 식이 필요 없는 경우도 많아요. 직관으로 풀면서도 확신을 가지려면 그만큼 개념이 탄탄하는데, 2번 차함수 이용하는게 대표적인 예라고 할 수 있겠네요 :)
항상 실모에서 시간이 부족한 저한테 이번 칼럼은 정말 인상깊네요... 눈으로 문제를 관조하는 능력은 어떻게 기르면 되나요?
만약 식으로 풀었다면, 답을 아는 상태에서 문제를 다시 보면서, 이 답이 무슨 의미가 있는걸까를 다시 생각해보는게 도움이 될 수 있어요. 예를 들어, 1번을 식으로 풀었다면 공비가 2가 나왔으니까, 이걸 내가 처음부터 볼수는 없었을까? 혹시 다른 문제도 그런게 아닐까? 검토를 다시 하는거죠.
3번빼고 다 선비로 풀었네욬..,;
제일위에예시5문제중에서 3문제 날라리처럼풀고 2문제 선비처럼풀었네요... 선비처럼푸는법도 좀더 단련시켜야될까요..???
둘다 중요하긴 한데, 등급대에 따라서 중요도가 다르긴 합니다.
논리적인 비약을 만들지 않으면서 계산을 깔끔하게 할 수 있는 방법을 찾아야되는데 그걸 못하는 사람(선생님들 포함)이 너무 많은듯 아 물론 나도 포함
선비테스트는 1번빼고 다 날라리처럼 풀긴함
뭐야 다들 선비처럼 푸는 거 아녔음? 그래서 시간부족으로 2등급인가
웃긴점-> 날라리처럼 풀라하면 선비처럼 풀고 선비처럼 보라하면 날라리처럼 보게 됨
쌉선비처럼 푸는 걸 좀 고칠 필요가 있다고 하신 것은 좀 그러니까 문제를 풀때 생각을 좀 하라는 말씀도 약간 포함되는 느낌이지요?
네 그게 많이 포함된거죠~
항상 선비처럼 접근하려하다 주변에 날라리 ㅋㅋㅋㅋㅋ 풀이를 쓰는 친구들이 많아서 점차 둘을 함께 썼던 것 같네요 좋은 글인 것 같아요!
감사합니다 ^^
선생님 글 진짜 잘쓰시네요~~
오랜만이네요 석준쌤 :)
칼럼 ㅆㅅㅌㅊ라 엄청 도움됐는데요? 처음입니다
잘됐네요! ^^
쌉 날라리를 하고 있었내요 항상..ㅋㅋ