칼럼) 수학의 생각의 회로_시험만 보면 떡락하는 당신.
게시글 주소: https://o.orbi.kr/00042681929
*경험담과 극복 방법, 그리고 수학을 어떻게 공부해야 하는가를 써놨습니다..!
제가 시험만 보면 작살났거든요.
수식때문에, 사진으로 붙여넣었습니다..!
중간에 예시로 나와있는 문제는 가볍게라도 고민하고, 뒤를 봐주세요..!
오늘도 26 부탁해요..!
혹여나, 시험에 대한 트라우마가 있으시다거나 고생하셨다면, 질문 주세요..!
너무 힘들었어서 그 마음 압니다..
힘든 입시판에 오셔서 혹은 입시판에 남게 되서.
응원보다는 걱정이 앞서고,
힘들었던 시간을 알아서, 얼마나 힘들지 알고 무작정 잘될거라고 말하기에는 험난한 길입니다.
그래서 19, 20살, 혹은 그 이상의 시간을 낭비하지 않으시도록
이왕 보내는 거 값질 수 있도록, 여지껏 글 썼고 앞으로도 써볼 생각입니다.
물론 이런 식의 '공부를 공부하는 내용'이거나, 공부하는 법에 대한 칼럼도 중요하지만,
좀 더 자세한 내용(현재는 국어 칼럼들)도 기대를 저버리지 않을 겁니다.
화이팅하고 또 달려요.
이왕 공부하는 거 잘해보자고요!
0 XDK (+10)
-
10
-
음 올해는 그냥 친다고만 생각해서인가? 뭐지
-
좀 괴짜시긴 한데 20수능 전지문 적중하신 분이 서양철학(화이트헤드, 바흐친,...
-
고2 N제 0
현재 예비고3 학생입니다. 수학 내신은 4점대 나오고 모의고사는 88~96점...
-
국어는 뭘 해도 백분위 92.93 영어는 1 고정 이 상태면 탐구 50 50 노리고...
-
물화 vs 물생 2
지구는 안해봐서 모르겠는데 화생 둘다 비슷하게 느껴져서 내년에 김준t로 화학 쭉...
-
이훈식 오지훈 0
쌩노베이스인데 개념기출 한정 누굴 더 추천하시나요? 작년 ot들어봤는데 훈식쌤이 더...
-
이번에 언매 장지문 고대국어 차자 표기법 나오고 고구려어랑 백제어 비교 지문 나올 거임 ㅇㅇ
-
다들 지 할 말만 해서 의미가 없거든
-
앱만들게생겼네 0
클났다
-
근데 찌라시대로면 IMF가 아니라 솔로우가 맞지 않음? 6
교수님이 실종됨 + LEET에서 암시된 학계 트렌드를 따라감 + 일상적인...
-
인생무상이구나 2
도룬 시의 가을 하늘을 생각하게 한다.
-
전날은 컨디션관리 해야되니까 이번 주말부터 딱 하루 잡아서 공부하다가 힘들때...
-
왜이렇게 갑자기 1
공부가 하기 싫지 수능 다가오니까 더 하기싫은듯
-
18살 이라네요... 왜 교복 안 입고 다녀 ...
-
이거 나오면 12.5초컷 가능
-
다들 수능 얼마 안남았다고 해이해지네
-
지구과학질문 0
심성암이있으면 화산활동이 있었던거인가요??
-
경제 물리 논리학 이라는거? 개씨발 ㅋㅋㅋㅋㅋ
-
ㅋㅋㅋㅋㅋ고갖다버릴까 해보세오
-
서울대, 연대 거시경제 전문이신 교수님이 수능검토위원으로 들어가셨다는 썰 등...
-
한지문 마음 편하게 버릴수 있도록 하는게 개꿀임
-
뻔한 인문철학??
-
수능 끝나고 뜯으시고 그날 저녁에라도 찍어서 보내주실 수 있는 현강수강생분...
-
수학 공통 답개수가 각각 12345네요 세 시험 모두 굉장히 좀 특이해 보이는데...
-
이걸 못봤었네.. 안타까워라 나중에 제대로 봐야지
-
샤인미 인피니티 마약n제 콘크리트212930 풀면 됨
-
와 국어 0
브레턴우즈, 할매턴우즈, 오버슈팅교수들 다 사라졌으면...... 독서나 문학중에...
-
친구못사겨서 혼자다니면 ㅈㄴ 억울할듯
-
올해 경제각이네 ㅋㅋ
-
대성 패스 구매하실 분 메가커피 기프티콘 같이 받아요 0
대성 마이맥 패스 구매하실 분 메가커피 쿠폰 같이 받아요! id :...
-
다들이거아님?
-
작년 2월에 인스타때문에 얘기많았었는데
-
흰옷 입으니까 인물이 훨 낫네
-
현역때랑은 비교도 안되게 힘드네… 체력적으로도 정신적으로도..
-
개인적으로..진행도 올드하고 질문도 재미없고 걍 침착맨 초대석이 더 재미있음...
-
1교시 치고 런 치는게 현명한 수준 아님? 그거 치고 수학 제대로 칠 수가 있나
-
판단 부탁드림
-
장점: 부모님이 있음 단점: 부모님이 있음 아 야식 먹고 싶은데 부모님 거실에서...
-
국수영탐 순서대로
-
논리철학은 에이어에서 끝인건가
-
아까 체중계 올라갔다가 충격받고 한시간째 몸져누워있음 몸이 무거워지네 ㄹㅇ로
-
브레턴 다 맞고 오던가 과거로 돌아가서 다시 보고 오던가 말던가..
-
이제 머할까요 걍 유빈이로 안 풀어본 유명실모들 주요번호대만 풀고 버릴까
-
https://youtu.be/mp2-w15SXms?si=aVcZvZRHRRoadsym
-
영어 듣기 방송 끝난 이후
-
goat
-
그걸 본 누군가는 “옯 옯 옯 옯” 울었ㄷㅏ네요
-
장씨 트리오 에잇
-
저 잘게요 5
다들 안녕히 주무셔요
나만 왜 블록체인 안 걸리죠.. 맨날 누르는데...
칼럼 대방출 ㄷㄷ
열심히 읽을게요
정말 열심히 써서 애착이 가는 글입니다..! 잘 부탁드려요,,
칼럼 감사합니다. 잘 읽을게요~~ 국어 칼럼도 감사합니다.
모든 과목에서
풀은 문제수 = 깨달음의 수 란 공식을 적용해야하는 군용... 정말 맞다고 생각합니다. 언젠 쉽게쉽게 풀렸던 문제도
다시 풀면 안풀리는 문제도 많았으니까요,, 잘 읽었습니당
저 말의 뜻이 참 전달하기 어렵네요 ㅜㅜ 전달이 됐길 바랍니다..! ㅎㅎ
선스크랩 후 정독
스크랩만 하시면 안돼요.! ㅎㅎ
하루에 2개라니.. 오늘 밤은 이거다
와 ㅁㅊ
국어도,수학도 저와 같은 생각을 하시는분께는 좋아요와 팔로우 ㅎ
이정도면 돈 받고 읽어야 할 수준이네요
이런 칼럼 많이 부탁드릴게요 ㅠ
감사합니다. 방향성을 가지고 양치기를 하면 괴물이 된다는거군요ㅎ
그렇죠..!
좋은글 감사합니다!
와 근데 어떻게 N제한권을 하루만에 다푸나요..? 교육청기출 두장푸는것도 2시간걸리는데..
헉..
와진짜 ㅜㅜㅜ 칼럼 읽으면서 제가 지금까지 아이디어에 의존한 것 같다는 생각이 들어요 ㅠㅠㅠ 혹시 수학 개념은 어디까지 파고드는게 좋을까요..? 예비 고3인데 개념 정말 확실히 잡고 싶어서요.. 개념공부는 증명 위주로 설명이 가능할 정도로만 공부하면 될까요?
개념은 확실하게 잡는게 맞아요. 교과서 개념을 실전 수능 개념까지 확장시켜서 잡으셔야 합니다…! 퍙균값 정리 같은 게 실제로 어디에서 쓰이는가 했을 때 인티그랄 a부터 b까지 f(x) 적분=0이면 f의 부정적분을 F라 할때, F(b)-F(a)=(b-a)f(c)이므로 f(c)=0인 c가 a<c<b를 만족한다. 이런 식으로 탁탁탁 나와야 합니다…! 평균값 정리 같은 경우 많은 학생들이 교과서에서만 보고 문제에 안 쓰는 경우가 많아서요…! 개념이 실전의 근간임을 일고, 실전 개념으로 전환해 공부하셔야 해요..!
감사합니다!!!
질과양은 동시에가야하는군요...
하루에 어마어마한양을푸는게아니라...
국어가 이런데 어떻게
해야할까요
국어는 재수하며 얻은 것 이러는 게시물과 국어 칼럼들에 써놨으니 보시면 됩니다..!
이 생각의 회로라는 것은 자기가 고민하거나 헷갈리는 문제에 한해서 만드는 갓인가요? 또, 따로 노트같은 곳에 정리해놓고 암기하는 식으로 하셧나여?
워낙 평소에 잘 푸는 문제는 이미 생각의 회로가 잡혀있는거죠.! 전 사실 문제 틀리면 실수로 틀리더라도 그 실수를 없앨 회로를 일일이 만들었네요,, 그래서 포스트잇을 엄청 썼었어요..! 포스트잇 나중에는 다 떼서 노트에 붙였는ㄷ 따로 외우진 않았어요 포스트잇 만들면서 머리에 각인이 되거든요! 대신, 정말 중요하다고 생각하는 건 옥스포드 노트 한쪽에 정리해서 쉬는시간에 스윽 읽으며 수능 봤네요!!
헐크 공부법 저두 한번 해볼게용..!
이런 사람이 에피 달고 의대 달겠구나
하루 한권... ㄷㄷ
와 잘읽었슴다ㅠㅠ.. 감사합니다 덕분에 방향 정했어요
뒷북이긴 한데 그래서 이번 수능 12번만큼 기출 반영 심하게 한 문제 없는듯요 ㅋㅋ
제가 현역때 왜 망했는지 알것 같네요
생각해보니 연습할 때 실전에서는 어떻게 풀것인가에 초점을 두고 생각회로를
연습했어야 했는데 '풀었으면 된거 아니야?' 라는 안일한 생각을 했던거 같네요
좋은 글 감사합니다 :)
이 글 동생한테도 보여줘야 할 것 같네요
저도 계속 후회한 게 현역 때 이걸 몰랐다는 사실이 원통해 다른 분들은 그러지 말라고 글을 쓰네요 알아봐주셔서 감사합니다 :)
개쩐다
감사합니다. 전 3등급인데 1등급 친구들도 제 풀이보면 "와 너 이문제 개잘풀었네 어케 생각했냐?" 이런적이 가끔 있었는데 이게 독이었네요
수학 1일 1~2 실모 푸는 요즘.. 다시 생각해보게 되는 글이네요
뭔가 저렇게 깨달음을 정리해놓는게 오답노트의 상위호환이라는 느낌이 드네요
그러면 오답노트는 따로 안하셨나요?
포스트잇의 깨달음이 일종의 제 오답노트였다고 생각하시면 될 것 같습니다!
이미 모든 경우에 대해 회로가 존재하는 수업을 듣고 그걸 체화하는 연습을 하는 건 어떻게 생각하시나요?
그런 수업은 찾았는데,
본문을 읽다보니 회로 자체를 만드는 경험도 중요하다는 생각이 들더라고요
물론 수업에 플러스 알파로 저만의 회로를 첨부하겠지만 스스로 무에서 유를 창조하는(회로생성) 경험을 꼭 해봐야 할까요?