수2 문제 하나만 알려주세요
게시글 주소: https://o.orbi.kr/0002312377
풀이좀 알려주시면 감사하겠습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
정시 공부는 초중고 내내 써먹던 공부방식 이랑 조금 다르다고 갠적으로 느꼈는데...
-
합격할 수 있을까요??
-
이제 대학 입학하는 새내기입니다.본가에서 가는데 2시간 정도 걸리는 대학에 가게...
-
지렛대 효과로 견과류, 쥐포 쉽게 우적우적 씹을수있음 ㅇㅈ?
-
궁금해서 투표 올려봅니다
-
24아이디어 비닐도 안 뜯은 수1수2있는데 26아이디어랑 많이 다른가요?
-
2월 7일날 발표 나온다하면 신입생 환영회나 ot같은건 언제쯤함? 2월 완전 말이나 그때 하나
-
깡춍!
-
인하대 인문자전 2
점공 안들어온 200명은 어느정도일까요......?다 안정권일것 같나요..?
-
미적언매화1생1 할거같은데 현우진 뉴런부터 시작해도 괜찮을까? 그리고 백호 섬개완...
-
개념 공부할 때 어삼쉬사 같은 문제집을 같이 끝내고 실전 개념으로 들어가나요,...
-
빵난거 일수도 있을까요?
-
수학 선택과목 노베수준이면 어떤게 제일 나은가요?
-
4점만 모아둔..
-
친구들이랑 10시간 드릴 하루컷 이딴거 하던 습관 못 버려서 흠 200쪽? 이틀 컷...
-
수2 적분퍼즐 0
미적은 있는데 수2에는 적분퍼즐 기출된 적 있나요?(교사경 포함)
-
낙지등수 실제등수랑 거의똑같다고 보면 됌?
-
어차피 졸업하고 cpa 변리사 이런거 준비할거면 초장부터 그나마 젤 잘하는 수능이나...
-
당당하게 밝기 최대로
-
ㅈㄱㄴ
-
날자. 날자. 한 번만 더 날자꾸나. 한 번만 더 날아 보자꾸나.
-
일반인으로 남기 아까운 실력이라고 유튜브나 오디션 봐보라함!! 수능 망치고 자존감...
-
군대 전역한 n수생인데 메가스터디 들을려고 하거든요 근데 메가 시발점 말고 뉴런부터...
-
안녕하세요. 예비고2입니다. 제가 지난 일주일 동안 국영수 하루 분량을 정해놓고...
-
어삼쉬사 풀고있는데 이게 10문제가 있으면 수1 특히 지수로그쪽이 3문제정도가...
-
사수생들 집합해라 19
왜 사수하냐 안 힘드냐
-
넣으면 붙을까요?
-
후자가 맞겠죠?
-
학벌위조 안하고 가만히 있으면 아무생각 없음?
-
시대인재 대전 수학 다니려고 하는데 강사 추천 햐주세요
-
그리고 날짜도 2월 9일인가 그러던데 추합으로 붙는 사람은 어케 보나요??
-
싱글벙글하다가 으악!
-
'엔숏 2배' 가즈아~ 13
헤헤헤헿 게임 재밌다 도파민 터진다 엔비디아 더 내릴 거 같은데요? 지옥 가즈아~
-
서성한뱃보다 건뱃이예쁨
-
홍대는 전통 공대이기도 하고 동국대는 딱히 뭐가 유명하다 그런 건 못 들어봤는데 왜 홍대보다 위죠?
-
통통이 수학 하 2
수학 하 파트 순열 조합 합곱 법칙이 뭔지만 아는 수준이여도 ㄱㅊ? 문제까지...
-
앙 1
수분감 내용 복기하고 기억안나거나 안풀릴것같은거 싹다 풀어야겠다
-
W관 위치 뭣같네 11
한티역에 내리면 너무멀어..
-
50만원 포함 메가패스를 결재 했으면 20만원만 다시 환불하는 것도 가능한가요?
-
김장겸 "나무위키 등 규제 사각지대 해외사이트, 논의 시작해야" 10
[데일리안 = 남가희 기자] 김장겸 국민의힘 국회의원이 '해외사이트 투명성·책임성...
-
고2 모고 기준 정법은 모고 거의 안풀었다가 마지막 10모 풀었을때 5떴고 세계사는...
-
청주교대 24학번 재학생과 함께하는 정시 면접 파이널 멘토링 모집 정시 면접을...
-
텝스인가 공부해야하는 것 같던데 무슨 책으로 공부해야하나요? 추천 부탁드립니다
-
통과에서 생명 파트 ㅈ같아서 던진 이후로 생명을 한번도 공부한적이 없는데 올해 안에...
-
기분 금새 좋아짐ㅋㅋㅋㅋ
-
주 2회 2시간씩 한다고 가정하면 수학1 수학2 각 8주, 미적 9주 확통 7주 정도 잡으면 되나
-
오르비 뱃지 티어리스트 27
카이스트랑 치대가 젤 예븐듯 그리고 외대는 너무 몬생겼음.....
-
“Chapter. 0 - 등차수열” 안녕하세요 ‘한국외대 부’입니다. 언제나...
-
둘다 의대관임
ab사이에 평균값정리 만족하는 지점 존재하구 bc사이에도 평균값정리 만족하는 지점 존재하겠죠??
결국 기울기가 작아지는 f(x)구하시면 됩니다
조건을 보면, 미분가능하다는 조건이 없네요. 즉, ㄱ, ㄴ 둘다 틀린 명제입니다.
(평균값정리를 쓸때에 연속, 미분가능의 조건을 따지는것은 중요하지요)
그리고 ㄷ도 옳지 않은것같군요.
조건을 만족한다고해서, f(x)=lnx라고 단정할수는 없지요.
ㄱ,ㄴ,ㄷ 모두 참이라고 할수 없습니다. 답이 없는문제이지요.
미분이 가능하다는 전제라면 답이 존재할까요?
주어진 조건은 f(x)가 위로 볼록인 함수임을 보장해줍니다. (사실 > 를 ≥ 로 바꾸면, 정확하게 필요충분조건이 됩니다.)
따라서 두 번 미분 가능하다는 전제 하에서 항상 f''(x) < 0 이어야 합니다.
사실 두 번 미분가능성을 생각하지 않더래도 f'(x)가 항상 감소함을 보일 수 있습니다. 증명은 다음 두 스텝을 밟으면 편하게 됩니다:
* Step 1) 우선 x < y < z < w 이면 항상 (f(y) - f(x))/(y - x) > (f(w) - f(z))/(w - z) 임을 보입시다. 문제 조건으로부터,
(f(y) - f(x))/(y - x)
> (f(z) - f(y))/(z - y)
> (f(w) - f(z))/(w - z)
이므로 원하는 바가 증명됩니다.
*Step 2) 이제 x < a < b < c < y 를 고정하고, 임의의 x < s < a, c < t < y 를 생각합시다. 그러면
(f(s) - f(x))/(s - x) > (f(b) - f(a))/(b - a) > (f(c) - f(b))/(c - b) > (f(y) - f(t))/(y - t)
이므로, s → x, t → y 로 극한을 취해주면
f'(x) ≥ (f(b) - f(a))/(b - a) > (f(c) - f(b))/(c - b) ≥ f'(y)
가 성립하여 원하는 바가 증명됩니다.
(이해가 잘 안 가신다고요? 주어진 조건을 A(a, f(a)), B(b, f(b)), C(c, f(c)) 사이의 평균기울기에 대한 내용으로 해석해보시면 너무나 쉽고 자명하게 위 내용이 이해가 될 겁니다. 그림은 우리를 속이기도 하지만, 대체로 우리에게 큰 도움을 주고 본질을 볼 수 있게 해 주지요.)
그리고 고등학교 과정이 아니긴 하지만, 개구간에서 볼록인 함수는 항상 연속이고, 좌도함수와 우도함수가 항상 존재하며, 가산(countable) 개의 점을 제외한 모든 점에서 미분계수가 존재함을 증명할 수 있습니다.
이야기가 딴 길로 샜는데, 결론은 '두 번 미분가능하다는 전제 하에서 오직 ㄴ만이 답이다' 라는 것입니다.
구체적인 반례가 필요할 경우, 다음과 같은 예를 참조하세요:
일단 미분가능하지 않은 반례로는 y = -|x - 1| 같은 쉬운 예가 있지요.
그리고 미분가능하더래도 y = -(x-1)^2 같은 경우 함수가 무한 번 미분가능한 아주 좋은 함수임에도 불구하고 도함수가 음수와 0, 양수를 모두 거칩니다. (그래서 ㄱ과 ㄷ은 구제할 수 없는 오답이지요.)