통계 표본에서 언어적으로 헷갈리는 문장 ㅠㅠ
게시글 주소: https://orbi.kr/0001286610
" 모집단에서 크기가 5인 표본을 복원추출하여 그 표본평균을 X라고 할때 "
이문장..;
헷갈리는게 뭐냐면
1회만 5개의 표본을 복원추출하여 그것의 평균을 구한것인지 , 아니면 나올수 있는 표본의 경우를 다 구한다음에
표본평균에 대한 확률분포를 만든 다음에 그것의 평균 구한건가요 ?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저번에 폭망하고 다시 하는 거… 응원 좀 해주세요…
-
풀어볼만한가요???
-
살짝 후회중 짜피 두개는 정원외 받아주는거였는데 흠 흠 흠 S/U인데 들을걸
-
그래서 안함 ㅎ
-
ㅈㄱㄴ
-
올클 성공 0
이게 되네 ㅅㅅㅅ
-
얼른 받아보고싶어요!
-
신성규T 기출해설 듣고있는데 한 귀로 들어와서 한 귀로 빠져나가는건 처음이네 문제 왜이리 어려움
-
-스카에서 오르비 하고 있는 고2모고 4346 수영지물 확통러
-
아 ㅋㅋ 왜 나만~
-
진짜모름
-
올클 -완- 5
-
배아파...ㅠㅠ 2
왜 아프지
-
하나빼고 올클 13
아무튼 올?클 이정도면 만족
-
씨발 11
숫자 하나 잘못쳐서 다밀렸다 생위수 생실 고영 베리타스 다놓침ㅋㅋ
-
Ai 얼평 ㅇㅈ 4
얼탱 +)
-
공지방에 야짤, 그것도 bl물을 올리냐...ㅋㅋㅋ 50명 봤던데 음
-
무휴학 반수 하면서 평가원이랑 수능 쳐본 결과 뻘짓만 안하면 공부를 많이 안해도...
-
정병호T 땅땅땅우랑 닮음
-
잡담태그 잘 달아요~ 팔취 먼저 안해요~
-
좋아 0
(좋은아침이라는 뜻)
-
고고
-
공부 어케해야하나요? 화작에서 언매로 바꾼거라서.. 메가패스 1개 있는데 그냥...
-
ㄷㄷㄷㄷ 0
?
-
5세트까지 갔다고 엄청 비등비등했다고볼수는없는듯.. 국제대회에선 어떨지...
-
실시간 레전드 ㅋㅋ 12
초비상 ㅋㅋ
-
즐거운 월요일 0
ㅎㅇㅎㅇ
-
서울대 일루와잇
-
잘자 1
-
완벽한 얼버기 10
-
강평ㅋㅋㅋㅋ 1
-
올해의 대규모 빵때문에 의대 증원 얘기 공중분해돼버리면 26연고 입시는 24때...
-
모닝 하겐다즈 15
굿
-
같이 재수한 친구 전기가 뭐냐 묻길래 전공기초고 전필처럼 안들으면 졸업못한다 하니...
-
아 ㅠㅠ 제발 사실이 아니라고 해줘 ㅠㅠ
-
혹시 질문할 수 있는 개인 채널이나 번호 없으실까요?
-
시대 과탐 기출 0
시대 기출 과탐은 어떤가요? 수학은 말 많던데 과탐은 딱히 말이 없어서 이제 중고로...
-
어떻게하나요? 1-1은 그냥 다니고 1-2는 최소학점만 듣는 방법도 있던데 이러면...
-
붉은 사슴뿔 버섯
-
새터 둘째날인데 6
똥 어케쌈?
-
강팀에게 패배한 것은 부끄러운 일이 아니다 근데 홈패는 좀 아깝긴 하네
-
6시반 교댄데 점장님 맨날 1시간 늦게오심 면접때 말씀하시기론 가끔 늦을 수도 있다매요....
-
빨리씻고나와라 1
머리좀감자
-
ㅇㅂㄱ 1
학원가는버스놓침ㅅㅂ
-
크악!!!! 13
숙취깨지도 않았는데 강제기상이라니 새터 싫어 걍 집에 갈래
-
급똥신호 안오길 빌어쥬셈
저도 이거 진짜 궁금했는데.. 동감.. 문제풀땐 다 잘 풀리는데 왠지 곰곰히 생각하면 헷갈릴거같아서 막상 수능날 나오면 잘못푸는거 아닌가 걱정되고 그러더라고요. 아는분들 답좀 달아주세요.. 비밀글말고요 ㅜㅜ
모집단에서 5개의 값을 골라, 이를 하나의 표본이라 하고, 이 표본 내의 5개의 평균을 '표본평균'이라고 해요. 위에서 말한 X도 이 경우이죠.
그러면 하나의 모집단에서도 어떻게 5개를 고르느냐에 따라 다양한 값의 표본평균이 나올 수 있겠죠. 이걸 '전부다' 모아놓고 수많은 표본평균들의 평균을 구하는 '생각'을 해 볼 수 있는데,(이 생각을 대체 왜 하는지는 아래에서 이야기할게요) 모집단이 좀 커지면 일일이 전부 구할 수 없겠지만 상식적으로(?) 나올 수 있는 수많은 표본평균들의 평균은 모집단의 평균이 되겠죠. 모집단의 평균을, 다시말해 모평균을 m이라 한다면 나올 수 있는 수많은 표본평균들의 평균도 m이 된다는 거죠. E(X)=m이라고 쓸 수 있겠네요.
여기서 중요한 건, 가능한 표본평균을 모두 구해 본 게 아니라, 아마 구할 수는 없겠지만 구한다면 m이 된다는 거에요. 다른 말로 하자면, X의 값이 뽑을 때마다 다를 수 있겠지만(따라서 V(X)가 존재하죠) 대충 m 앞뒤에서 나올 거라는 거죠. 이걸 보장하지 않으면, 표본평균 구해 봤자 아무 쓸모가 없기 때문에, 표본평균으로 모평균을 짐작할 수 있다는 '이론적 근거'가 되는 거에요. 다시말해 표본평균이 대충 모평균과 비슷한 값으로 나오는지 확인하기 위해 나올 수 있는 모든 표본평균의 평균이라는 '생각'을 하고, 상식적으로(?!) 이게 모평균과 같다는 걸 알 수 있기 때문에 결론적으로 표본평균이 모평균과 비슷하게 나올 건데, 약간의 차이는 있을 수 있다는 거죠. 그러면 얼마나 차이가 날지 알고 싶게 되고... 그건 V(X)로 짐작하게 되죠.
그리고, 표본평균이 가질 수 있는 모든 값을 생각해서 확률분포를 만들고 그 평균을 구한다면 그건 '상수'이기 때문에, X라는 미지수 냄새가 나는 글자로 표시하지는 않겠죠. ㅇ.ㅇ ㅇ.ㅇ
옆에서 과외해주시는거 같에요.. ㅋㅋㅋㅋ 이해 잘되었습니다~