[정병훈T] 6평으로에피단다님의 21번 자작문제 해설
게시글 주소: https://o.orbi.kr/00011923126
2017년 4월 30일 6평으로에피단다 21번 자작문항 해설.pdf
안녕하세요. 오랜만입니다.정병훈선생입니다.현재 강남대성학원에서 수학을 강의하고 있고,올해에는 슈퍼파워N제시리즈 저자가 되었습니다. 여기 오르비 게시판에서 좋은 문제를 발견하였는데,제가 생각한 풀이방법을 언급하는 분들은 거의 없던 것 같아서,해설지를 한 번 만들어 봤습니다.6평으로에피단다님의 21번 자작문제 원본참고로 원본에서 f(x)의 정의구간을 x0인 범위로 제공하고, 이 범위에서 미분가능한 함수라고 제공하지 않으면, 조건 (나)에서 x0인 범위에서의 교점의 개수를 보장할 수 없어서, 이 부분만 문제를 약간 수정했습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
회사 취업은 별로 안끌리는데 그래도 문과 가기는 과탐한게 아까워서 공대써야하는데...
-
기억나는사람 있나요?
-
본인 원점수 45인데 18번은 아예 건들지도 못함
-
김범준들을까요ㅡ 0
수강신청하고 결제까지했는데 듣는게 좋겠죠?
-
23124면 어디가야되나요 ㅠㅠ...
-
나두 싸울래! 1
아냐 안할래 무서웡
-
지구 1컷 2
44가 나오진 않겠죠? 43점인데 지구가 1나와야 논술 최저를 맞춰서.. 논술...
-
고2 수학 1등급, 고3 모 풀어봤을때 3점 다 맞고 쉬운 4점 다 맞고 4점...
-
어떠카지. . . 내 생지 ㅠㅠ
-
의대 2
경북대의대vs한림대의대 대구 거주중인데 둘 중에 어디로 가야할까요..
-
어??????????????????????????????????????????????...
-
국어가 완전 붕신이라 포기햇음뇨
-
피자스쿨인가? 그 스쿨이 새로 떠오른다네요..
-
고2 때 자퇴한 06년생입니다 집안 상황이 많이 안 좋아서 18살 일년동안은 계속...
-
로스쿨 소신발언 9
이름 간지남!
-
한의대약대수의대서울대 성적에서 왜 안오르는지 후
-
수학도 수업 받을 생각인데 아주 만약 오르비언이면 민망할 거 같아요 물론 제가...
-
아는 동생 1명이랑 초등 중등 동창 1명 과외해줘야하는데 둘 다 과탐? 과외할거라서...
-
n+1 해주셈 나 연의가게
-
푸하핫
-
오 버 워 치 ㅎㅎ
-
지구 0
지구 1컷이 만약 1점 떨어지면 2,3컷도 1점씩 내려가는건가요 ?? 아니죠?
-
2026 개정 중입니다. 요즘 트렌드가 많이 바뀐 것 같아서 목차나 내용 구성을 싹...
-
오르비 리젠 다 죽었다 15
흑흑
-
정병훈쌤 겨울방학부터 들을라했는데 은퇴하셔서.. 정병호T나 이번에 신규입성한...
-
예나 9
-
새삼 5
내가 현역때 국어를 얼마나 끔찍하게 조졌는지 실감이 가네
-
백분위 86 100 3 92 96 이게 딱 고려대 낮-중간 공대 합격성적이었움...
-
양치기로 작수 4에서 1로 왔는데 만점권까지도 양치기로 되나요
-
느낌이 옴
-
미적77 0
메가에선 3뜨는데 미적3틀 77은 2 안될까요..
-
낫지 않나 탐구는 모집단 풀 자체가 다르니 유불리가 당연히 있을 건데 국수는...
-
정말로 입이 험해지지 않고 마음에 여유가 생긴 느낌
-
수능 찐막트? 15
응애...
-
경제 선택자가 그렇게 많은지 몰랐지 나는.. 다 여기있었구나
-
윤도영이랑 비교하고 있던데 그정도에요?
-
히히
-
사탐런 과목 추천좀 10
보통 이과가 사탐런하면 뭐뭐 주로 함 25수능은 물1지2 했음
-
이공계 질받 33
서울대 공대에서 썩고 있는 늙은이입니다
-
본인은 장수면서 재수인 나보다도 이번 수능을 못 봤던데 그럼 본인은 좆같이도 노력을 안 한 건가?
-
덕코줍줍하기 6
-
호감오비르언 7
덕코주는오비르언
-
EBS 등급컷은 확정된건가요?? 생윤 30점이라 3등급이 간절한데 그냥 포기하는게...
-
저는 작년에 그 긴 꼬리도 못잡았네요 ㅠㅠ 작년기준 396점인가 그래가지고
-
치대, 약대, 수의대 가능할까요? 가능하다면 어디대학쯤까지 가능할까요?
와 미친.. 지렸다
선생님 질문이 있습니다
보통 변곡접선으로 풀리는 문제에 대해서는
전부다 기하적과 수식적으로 둘 다 관찰이 가능한가요?
아니면 한쪽으로만 나오게끔 하는 경우도 존재하려나요?
보통은 양쪽다 열어놓는 것이 기출의 선례인데 이 부분에 대해서 의견이 궁금합니다
수식으로는 모두 가능합니다. 기하적으로 보통 변곡점 접선을 언급하는 방법은 두 함수 중에 어느 하나의 함수가 1차함수 정도로만 예쁘게 출제해야 가능합니다.
다만, 효율성의 측면에서는 문제에 따라 판단이 다르므로, 어느 풀이가 더 좋다고 쉽게 단정할 수는 없습니다.
이번 같은 경우에는 도함수 자체가 쉽게 도출이 되었는데
예를들어 f=mx+n과 한점에서 만나도록 하는 m의 값을 구하라고 했을때 이 경우에는
도함수자체의 살근에 따라서 달라지니까 만나는 것을 기준으로 분할하여 사고하면 될까요?
{f(x)-n}/x=m으로 놓고, g(x)={f(x)-n}/x으로 고쳐서 푸는 게 쉬울 겁니다.
오히려 이 문제의 경우 해설 기준으로 모든 k에 대한 문제라서 k가 우변에 단독으로 있는 것이 모양이 좋으니 저런 식으로 해결하지 않은 것입니다.
아 제 질문은
선생님이 위에 잡으신 함수꼴로하고 미분을하게 되어 나오는 식을 통해서 원함수를 추론하고 그에따라 그래프를 그린이후에 교점의 갯수를 찾는것인데
이 경우에 도함수가 n에 의해서 확정이 안되기에 찢어서 일반적으로 사고해야하나요?
이 경우는 그렇게 하지 않아도 쉽게 도함수값을 도출가능하기에 저런식으로 원시함수 자체를 적분한것으로 이해하면 되련지요!
또 일반적으로 m,n이 실수 전체의 가뵤을 가지는 것이 일반적인데 어느때는 나눠서 잡고 어느때는 위에 해설한 방향으로 잡아야하는지 궁금합니다!!
아 저는 n값이 고정되어 있을 때를 m의 값의 범위를 구하는 문제를 질문한 건 줄 알았습니다.^^
둘다 변할경우에는 어떤식으로 식을 정리하는것이 좋을까요
둘다 변하는 문제는 나중에 언급되는 알파벳을 우변에 단독으로 두는 것이 좋습니다.
아 x로 나누게 되면 분할해서 따져야하는 것들이 더 많게되어서 그렇게 식을 조작한다고 생각하면 될까요?
정말 감사합니다 ㅠㅠ
x로 나누느냐 아니냐는 중요하지 않습니다. 먼저 언급된 문자가 먼저 결정되는 법이니까요. 예를 들어 m이 먼저 결정된 후에 n을 언급하는 경우에는 우변에 n이 있어야 m에 따르는 풀이를 할 수 있습니다.
여기 해설도 m이 k보다 먼저 결정되니, 우변에 k가 있는 것이 쉬운 것입니다.
아 조건 나에서 주어진 것이 m에 대한 식이 주어졌으니 k꼴만 남기고 다 옆으로 밀어버리는게 맞는것이라고 이해했는데 맞게이해한건가요?
맞습니다.^^
나 조건은 다시보니 16학년도 6평 21번과도 일맥상통하네요.. 저도 정말 많이 배워갑니다 감사합니다
바로 그 점 때문에 이 문제가 좋은 문제라고 생각했던 것입니다. 좋은 문제를 보여주셔서 감사합니다.^^
어 저도 처음엔 그래프로풀고 두번째는 수식으로했는데ㅎ 배워갑니다
읽어주셔서 감사합니다.^^
저는 (가)조건해석을 적분식을 F(x2)-F(x1)으로 바꿔준 뒤 x2-x1으로 나누어준 후 극한을통해 f(x)>=0이라고 해석해주면 (가)조건을 모든상황에서 만족시키는 결과라 생각해서 그렇게 풀었는데 옳은걸까요??! 뭔가 논리적비약이 있는것같아서..
올바른 풀이입니다. 비약은 없습니다.^^
보통 그렇게 미분계수의 정의로 풀면 역 증명을 평균값의 정리로 해줘야 필요충분조건이 되는데, 이 문제에서는 역 증명이 평균값 정리를 써야 할 정도로 어려운 게 아니라서 괜찮습니다.
사실은 가조건의 제 의도는 미분계수를 이용하는 그 풀이입니다
물론 증가함수임를 이용하거나 적분의 넓이에 의한 직관도 현실적인 좋은 대안이겠지요
사실 난이도를 소폭 하향하고자 우변을 x2-x1이라고 안둔거랍니다
난이도 하향의 마음은 제가 잘 이해하고 있습니다. 강대에서 현재 제가 들어가는 반 학생들은 알 겁니다. 최근에 이런 유형의 (제가 만든) 문제를 이미 강의했는데, 저 역시 인테그럴의 옆에 x2-x1은 없었거든요. 그리고 적분으로 내놓으면, 넓이에 의한 직관으로 생각하는 학생들이 있다는 것도 알고 있어서, 일부러 그쪽을 가능하게 만들기도 하는 것이지요.^^